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We present a holistic framework for prescriptive analytics. Given side data x, decisions z, and uncertain

quantities y, that are functions of x and z, we propose a framework that simultaneously predicts y and

prescribes the “should be” optimal decisions z̄. The algorithm can accommodate a large number of predictive

machine learning models, as well as continuous and discrete decisions of high cardinality. It also allows for

constraints on these decision variables. We show wide applicability and strong computational performances

on synthetic experiments and on two real-world case studies.
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1. Introduction

A key objective in Operations Research (OR) is to obtain decisions based on data. The traditional

approach in OR is to build models from which we can derive decisions. By and large, data in OR

models has only played a supporting role. In contrast, data in Machine Learning (ML) models has

played a protagonistic role.

We are given training data {xi, yi, zi} and a cost function c(yi,zi) for i ∈ {1, . . . , n}= [n], n ∈N,

where xi ∈ Rm is the vector of covariates for observation i, yi ∈ R is the outcome, and zi ∈ Z
the decision set. Our goal is to prescribe the optimal treatment that minimizes the cost function

c for a new observation x0. We introduce the decision variable z̄i ∈ Z for i ∈ {0, . . . , n} which is

the treatment that we prescribe for observation i, in contrast with zi ∈ Z which is the observed

treatment, and which is available only for i∈ [n], i.e., training data.

Since the outcome of the new observation x0 is unknown, we need to predict it in order to be able

to compute its cost, and ultimately prescribe the optimal z̄0. If we are given the function f(x0, z̄0),

1
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∀z̄0 ∈Z, to predict the outcome for x0 under any treatment z̄0, the problem we are trying to solve

can be written as in Problem (1).

min
z̄0

c(f(x0, z̄0), z̄0)

s.t. z̄0 ∈Z.
(1)

The standard paradigm for this type of prescriptive problems has been to learn f separately within

a class of ML functions F such that it minimizes the mean-squared error on the predictions over

the training data as described in Problem (2), then to use it in order to solve Problem (1) in a

predict-then-optimize fashion.

min
f

n∑
i=1

(yi− f(xi, zi))
2

s.t. f ∈F .
(2)

Note that what we mean by minimizing over f in Problem (2) is minimizing over a finite number

of parameters that fully define the function f , for example the weights W of the neurons if f is a

neural network, the design T of the tree if f is a decision tree, or the coefficients β of the regression

if f is a linear, polynomial or convex regression.

However, going beyond the standard predict-then-optimize paradigm, recent efforts have tried to

go directly from data to decisions using ML methods. Bertsimas and Kallus (2020) propose a

framework that can accommodate a large number of ML algorithms, works for both continuous

and discrete variables, and can also accommodate constraints, but still utilizes the framework

of first predicting, and then prescribing in a sequential fashion. Bertsimas et al. (2019) propose

an extension of Optimal Classification and Regression Trees (Bertsimas and Dunn (2017)) called

Optimal Prescriptive Trees (OPTs), that simultaneously predicts and prescribes. While the method

is powerful and interpretable, it is limited by that the decisions need to be discrete and small in

cardinality, and cannot be constrained.

In this paper, we propose a generalization of OPTs to arbitrary ML methods, that simultaneously

predicts and prescribes, can accommodate continuous decisions as well as discrete decisions of high

cardinality, and also allow constraints on the decision variables.

To prescribe the optimal treatment z̄0, we propose a framework for prescriptive analytics that

jointly regroups observations into clusters with similar behaviors, learns a predictive model over

each of these clusters and prescribes the optimal decisions under constraints. The intuition behind

this framework is that clustering allows to achieve higher accuracy by aggregating data into clusters
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and to divide the training process into smaller subproblems, while performing all the tasks (clus-

tering, prediction and prescription) jointly allows us to find the right trade-off between accurate

predictions and optimal decisions, in a tractable way that can account for continuous and con-

strained decision spaces. This framework can be used with a wide range of predictive ML methods

and cost functions for the prescriptions, with both constrained and unconstrained problems, as

well as with a decision space that can be infinite or even continuous. We show that the proposed

method, which we will refer to as Holistic Prescriptive Analytics method or HPA, is scalable,

and that it significantly improves state-of-the-art performance.

Like OPTs, our framework also provides interpretability when the ML methods used are inter-

pretable, which can be vital in some applications (See Section 6 for a Case Study).

1.1. Literature Review

The standard paradigm in real-world analytics problems involving prediction and optimization is

predict-then-optimize, where ML tools are used to predict a point estimate of an uncertain quantity,

that is then plugged in a nominal optimization problem to solve for the optimal decisions.

Due to the poor performances of this paradigm, researchers have tried to account for the variability

of the prediction by solving the optimization problem over the expected value of the prescription

cost, and by approximating this expected value by the empirical sample average (Sample Average

Approximation SAA), see for example Birge and Louveaux (2011). On the other hand, researchers

proposed to use Robust Optimization instead of Stochastic Optimization to solve for the optimal

decisions once the prediction is made, see for example Ben-Tal et al. (2009) and Bertsimas et al.

(2018). In this case, the uncertainty of the prediction is accounted for by considering the worst-case

scenario within an uncertainty set.

Kallus et al. (2018) combines both approaches by proposing a more robust estimation of SAA

using propensity scoring, while other approaches have tried to account for prescriptive cost in some

way during the prediction. Tulabandhula and Rudin (2013) for example minimize a loss function

that combines the prediction error with the operational cost. In Kao et al. (2009) and Ban and

Rudin (2018), the ML models are trained to directly predict the optimal solution of the nominal

optimization problem. Elmachtoub and Grigas (2017) extends the predict-then-optimize framework

into a Smart Predict-then-Optimize (SPO) by introducing an SPO loss function which measures

the decision error induced by a prediction as the new objective function for the prediction phase.

This prediction is then used as a point estimate in the optimization phase in the same way as the

standard predict-then-optimize.

Bertsimas and Kallus (2020) move away from this paradigm and use a framework that leverages

previously trained ML models in a prescriptive optimization problem without actually using the
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point estimate by optimizing over a weighted combination of training samples instead with the

weights computed based on the ML methods trained for the prediction. Bertsimas et al. (2019)

introduce OPTs, which change the objective function of the Optimal Classification and Regression

Trees Bertsimas and Dunn (2017, 2019) to account for the prescription cost, and hence making the

prediction and the optimal decisions at the same time instead of sequentially. However, the decisions

need to be discrete and small in cardinality and cannot be constrained, due to the complexity of

the formulation of the prescriptive tree model.

1.2. Contributions

Motivated by these recent efforts in advancing the field of prescriptive analytics and the limitations

of some of the existing algorithms, we develop a prescriptive framework that

1. Can accommodate an arbitrary ML method for prediction.

2. Simultaneously predicts and prescribes, moving away from the predict-then-optimize

paradigm.

3. Allows continuous and constrained decisions.

4. Allows the uncertain outcome y to be also a function of the decisions z.

5. Regroups the observations into clusters of similar behavior which enables us to achieve higher

accuracy by aggregating data into clusters and to divide the training process into smaller subprob-

lems for tractability purposes.

6. Has strong computational performance and wide applicability for both synthetic and real

world datasets.

We test different versions of this framework and perform extensive numerical experiments to bench-

mark the predictive accuracy, prescriptive cost, scalability and interpretability of the framework

(see Section 6). We perform these experiments on synthetic data, i.e., generated data where the

underlying behavior, and hence the counterfactuals, are known, and on two real-world case studies:

a diabetes case study where we prescribe an optimal treatment in order to minimize the expected

average blood sugar levels of patients, and an assortment optimization case study where we opti-

mize display for a food retailer in order to maximize revenue. In the former case study we use an

interpretable approach due to the medical nature of the application. In these experiments, we show

that the HPA framework is scalable and provides a performance edge over alternative methods.

Across the 3 computational experiments that we detail in this paper, with datasets up to 100,000

observations and about 100 features, we observe between 14% and 30% improvement in terms of

out-of-sample prescriptive cost compared to the predict-then-optimize baseline, and between 5%

and 17% improvement compared to the state-of-the-art predictive-prescriptive method (Bertsimas

and Kallus (2020)).
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2. Proposed Approach

The first idea of our approach combines Problem (1) and Problem (2) by jointly learning the

predictive function and prescribing the optimal treatment. This is done by minimizing over f and

z̄ the weighted average of the prediction error on the training data and the prescriptive cost on

both the training data and the new data point x0. We denote λ∈ [0,1] the weight of the prediction

error and (1−λ) the weight of the prescriptive cost. We obtain Problem (3).

min
f,z̄

λ
n∑

i=1

(yi− f(xi,zi))
2 + (1−λ)

n∑
i=0

c(f(xi, z̄i), z̄i)

s.t z̄0, . . . , z̄n ∈Z,
(3)

Note that the first part of the objective function of Problem (3) is exactly the objective function

of Problem (2), weighted by λ. The second part of the objective function of Problem (3) is just

the cost function used in Problem (1), weighted by 1−λ, and applied to both the new data point

i= 0 and the training data i∈ [n] in order to account for the entire prescriptive cost, even though

the final objective is just to get the optimal treatment z̄0 only.

Our overall approach extends Problem (3) by clustering each observation i ∈ {0, . . . , n} into a

cluster j ∈ [k], where k is a predefined number of clusters. Then, within each cluster j, we train a

different predictive model fj to predict outcomes based on covariates and treatments. Since we do

not have any outcome for observation x0, we assign it to the cluster that minimizes the average

distance in terms of features of its points to x0. Here, we take the `2-norm, but any other tractable

distance can be considered. The key of our approach is that all three steps (clustering, prediction

and prescription) are done jointly.

We also define the following additional notation:

(a) ui,j: the binary outcome of whether observation i is assigned to cluster j.

(b) fj: a function that learns the prediction of the outcome y based on the covariates x and the

observed prescriptions z.

(c) Nmin: hyper-parameter defining the minimum number of training observations in each clus-

ter.
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Problem (3), with the additional layer of clustering becomes Problem (4).

min
u,f ,z̄

λ
n∑

i=1

k∑
j=1

ui,j(yi− fj(xi,zi))
2 + (1−λ)

n∑
i=0

k∑
j=1

ui,jc(fj(xi, z̄i), z̄i)

s.t z̄0, . . . , z̄n ∈Z (constraints on decisions),
n∑

i=1

ui,j ≥Nmin, ∀j ∈ [k] (minimum number of training observations per cluster),

k∑
j=1

ui,j = 1, ∀i∈ {0, . . . , n} (one observation is assigned to exactly one cluster),

u0,j ≤ 1

j = arg min
j′∈[k]

n∑
i=1

ui,j′‖x0−xi‖22
n∑

i=1

ui,j′

 ,∀j ∈ [k] (x0 is assigned to the closest cluster).

(4)

Note that the last constraint of Problem (4) enforcing that x0 is assigned to the closest cluster is

an inequality instead of an equality to ensure that the problem remains feasible if several clusters

satisfy the closeness condition.

The clustering has two main advantages: increasing the predictive accuracy of simpler tractable

models (for example training a Linear Regression model on the entire dataset yields worse results

than training a different Linear Regression model on each subgroup with similar underlying behav-

iors), and reducing the size of the training set for the different models by training them into smaller

batches.

To highlight the fact that Z can be constrained, we replace, without loss of generality, Z by

{(z0, . . . ,zn) | hr(z0, . . . ,zn)≤ br, r ∈ [s]} for some s ∈ N. These constraints on the decisions can

for example be budget constraints. Our proposed approach can then be summarized in Problem

(5).

min
u,f ,z̄

λ
n∑

i=1

k∑
j=1

ui,j(yi− fj(xi,zi))
2 + (1−λ)

n∑
i=0

k∑
j=1

ui,jc(fj(xi, z̄i), z̄i)

s.t hr(z̄0, . . . , z̄n)≤ br, ∀r ∈ [s] (constraints on decisions),
n∑

i=1

ui,j ≥Nmin, ∀j ∈ [k] (minimum number of training observations per cluster),

k∑
j=1

ui,j = 1, ∀i∈ {0, . . . , n} (one observation is assigned to exactly one cluster),

u0,j ≤ 1

j = arg min
j′∈[k]

n∑
i=1

ui,j′‖x0−xi‖22
n∑

i=1

ui,j′

 ,∀j ∈ [k] (x0 is assigned to the closest cluster).

(5)
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2.1. Solving the General Problem

In this section, we outline Algorithm 1 for HPA. We assume that optimizing over the predictive

function f involves a collection of parameters. We cover in Algorithm 1 the case of learning models

that are fully defined by a set of parameters of fixed size which can be globally optimized over

a custom loss function. This definition includes, but is not limited to neural networks, where

the parameters are the weights of the neurons W j, optimal trees, where the parameters are the

design of the tree Tj and linear, polynomial, and convex regression, where the parameters are the

coefficients βj of the regression for each cluster j. When we say optimize over the function fj, we

mean optimize over the finite parameters that define fj.

We propose an alternative algorithm for non-parametric and black-box models that minimize the

mean-squared error loss in Section 3 and expand extensively on the cases of decision trees and

linear regression in Section 4 and Section 5, respectively.

We use a local search iterative approach with multiple restarts to solve Problem (5). We start with

a warm start u(1) and z̄(1) for u and z̄. Then, for t∈ [Nmax− 1], we fix u(t) and z̄(t) to find f (t+1)

as in Equation (6), then we fix u(t) and f (t+1) to find z̄(t+1) as in Equation (7), and finally we fix

z̄(t+1) and f (t+1) to find u(t+1) as in Equation (8). We describe the Algorithm in Algorithm 1.

Algorithm 1 IterativeSolve(X,y, z, u(1),z̄(1), Nmin, Nmax, k)

for t∈ [Nmax− 1] do

for j ∈ [k] do

f
(t+1)
j = arg min

fj

λ
n∑
i=1

u
(t)
i,j (yi− fj(xi,zi))2 + (1−λ)

n∑
i=0

u
(t)
i,j c(fj(xi, z̄

(t)
i ), z̄

(t)
i ), (6)

end for

z̄(t+1) = arg min
z̄

n∑
i=0

k∑
j=1

u
(t)
i,j c(f

(t+1)
j (xi, z̄i), z̄i) s.t hr(z̄0, . . . , z̄n)≤ br,∀r ∈ [s], (7)

u(t+1) = arg min
u

λ
n∑
i=1

k∑
j=1

ui,j(yi− f (t+1)
j (xi,zi))

2 + (1−λ)
n∑
i=0

k∑
j=1

ui,jc
(
f
(t+1)
j (xi, z̄

(t+1)
i ), z̄

(t+1)
i

)
(8)

s.t
n∑
i=1

ui,j ≥Nmin ∀j ∈ [k]

k∑
j=1

ui,j = 1, ∀i∈ {0, . . . , n}

u0,j ≤ 1

j = arg minj′∈[k]

n∑
i=1

ui,j′‖x0−xi‖22
n∑

i=1
ui,j′

 ,∀j ∈ [k],

end for

Return f
(Nmax)
1 , f

(Nmax)
2 , . . . , f

(Nmax)
k , z̄(Nmax), u(Nmax).

Algorithm 1 converges to a local minimum of Problem (5), which is why we use multiple restarts.

We can get warm starts z̄(1) and u(1) by setting z̄
(1)
i to zi for i ∈ [n] and z̄

(1)
0 at random, and

getting u(1) from a clustering method such as k-means on the xi’s. Note that Problem (8) can be
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solved optimally similarly to Bertsimas et al. (2020), or solved greedily by first optimizing over

the values of u
(t+1)
i,j for i∈ [n] and j ∈ [k] then assigning x0 to the closest cluster in average.

3. Quadratic Cost Function

When the cost function can be written c(y, z̄) = y2, we can solve Problem (6) more efficiently. In

this case, we outline Algorithm 2 for HPA, which generalizes to any ML method that minimizes the

mean-squared error loss, regardless of whether or not it can formulated as an explicit optimization

problem. This includes for example greedy, non-parametric models such as CART (Section 5) and

Random Forests, and black-box models, in addition to the class of models covered by Algorithm

1. In this section, optimizing over function fj means selecting the “best” fj with regards to the

mean-squared error on a dataset that we define, within a selected class of functions. We further

discuss conditions for tractability in the complexity analysis.

In Algorithm 2, instead of changing the objective function of the ML method fj for each cluster

j to get Problem (6), which is hard to do for some ML methods such as CART (Breiman et al.

(1984)) or even some complex neural network structures (LeCun et al. (2015)), we change the

dataset over which we minimize regular mean-squared error loss. If we assume λ is rational, i.e.

can be written p
p+q

, p, q ∈ Z+, with p and q preferably small, we create p copies of every training

observation i in cluster j to account for the predictive part of the objective function as in Problem

(9). Then we create q modified copies of every observation i in cluster j where we set the target

variable to 0 to get exactly the prescriptive part of the objective function as in Problem (10).

Algorithm 2 PredictiveFit(X,y, z, l, z̄, k, p, q)

Let λ= p
p+q

, p, q ∈Z+.

for j ∈ [k] do

Create p copies of every training observation i in cluster j: xi, zi, yi, (9)

Create q modified copies of every observation i in cluster j: xi, z̄i, 0, (10)

Solve the regular mean-squared error model fitting for fj on this new dataset,

i.e. fj = arg min
f

pn̄j+qnj∑
i′=1

(y′i− f(x′
i,z

′
i))

2 with the notations that variables with a “ ′ ” super-

script indicate variables in the new created dataset, nj the number of observations in cluster j

and n̄j the number of training observations in cluster j.

end for

Return f1, f2, . . . , fk.
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Proposition: The output of Algorithm 2, and that of Problem (6) are equal.

Proof: Let j ∈ [k] a cluster with nj observations and n̄j training observations. The minimization

problem in Algorithm 2 is equivalent to Equation (11).

min
fj

pn̄j+qnj∑
i′=1

(y′i− fj(x′
i,z

′
i))

2

⇐⇒ min
fj

n̄j∑
i=1

p(yi− fj(xi,zi))
2 +

nj∑
i=1

q(0− fj(xi, z̄i))
2

⇐⇒ min
fj

n̄j∑
i=1

p

p+ q
(yi− fj(xi,zi))

2 +

nj∑
i=1

q

p+ q
(0− fj(xi, z̄i))

2

⇐⇒ min
fj

n̄j∑
i=1

λ(yi− fj(xi,zi))
2 +

nj∑
i=1

(1−λ)(fj(xi, z̄i))
2

⇐⇒ min
fj

n̄j∑
i=1

λ(yi− fj(xi,zi))
2 +

nj∑
i=1

(1−λ)c(fj(xi, z̄i), z̄i)

⇐⇒ min
fj

λ
n∑

i=1

ui,j(yi− fj(xi,zi))
2 + (1−λ)

n∑
i=0

ui,jc(fj(xi, z̄i), z̄i)

(11)

Which proves the equivalence. �

Complexity of the algorithm

In order to bound the complexity of Algorithm 1 in the quadratic case, we assume that Problem

(12), which minimizes the mean-squared error loss for each ML method fj over a dataset of size n

can be solved with complexity O(q1(n)).

min
fj

n∑
i=1

(yi− fj(xi,zi))
2, (12)

We also assume that Problem (13) which minimizes, given fj and x, the prescriptive cost for

decisions z over a dataset of size n+ 1 can be solved with complexity O(q2(n)).

min
z̄

n∑
i=0

c(fj(xi, z̄i), z̄i)

s.t. hr(z̄0, . . . , z̄n)≤ br, ∀r ∈ [s],

(13)

We have that complexity of solving Problem (6) at each time t which consists of fitting f1, . . . , fk

using Algorithm 2 is O(
k∑

j=1

q1((p+ q)×nj)) , where nj is the number of observations in cluster j.
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Complexity of solving Problem (7) at each time t is O(q2(n)), while Problem (8) is an assignment

problem, completely independent of the complexity of the ML model or that of the constraints on

the decisions, its complexity is negligible compared to the 2 previous steps.

So we have a total complexity of qT bounded by O(Nmax(kq1((p+ q)×n) + q2(n)). On average, for

evenly-distributed clusters, this complexity becomes qT =O(Nmax(kq1((p+ q)× n
k
) + q2(n)), which

is tractable for reasonably small p and q.

4. Linear Parametrization

We can further improve the efficiency of solving Problem (5) for particular ML methods. In this

section, we discuss the case where fj is linear for each cluster j ∈ [k], i.e. there exist coefficients

βj and γj such that fj(xi, z̄i) = βT
j xi − γjz̄i ∀i ∈ [n]. Problem (5) can be then rewritten to get

Problem (14).

min
u,β,γ,z̄

λ
n∑

i=1

k∑
j=1

ui,j(yi−βT
j xi− γjzi)

2 + (1−λ)
n∑

i=0

k∑
j=1

ui,j(β
T
j xi + γjz̄i)

2

s.t hr(z̄0, . . . , z̄n)≤ br,∀r ∈ [s],
n∑

i=1

ui,j ≥Nmin ∀j ∈ [k],

k∑
j=1

ui,j = 1, ∀i∈ {0, . . . , n} ,

u0,j ≤ 1

j = arg min
j′∈[k]

n∑
i=1

ui,j′‖x0−xi‖22
n∑

i=1

ui,j′

 ,∀j ∈ [k]

(14)

For the linear parametrization, Problem (6) can easily be formulated as a tracatable optimization

problem, to obtain Problem (15), which can be solved directly. The corresponding iterative proce-

dure to solve Problem (14) is described in Algorithm 3, which is similar, but more efficient than

Algorithm 1.
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Algorithm 3 IterativeSolveLinear(X,y, z, u(1),z̄(1), Nmin, Nmax, k)

for t∈ [Nmax− 1] do

for j ∈ [k] do

β
(t+1)
j , γ

(t+1)
j = arg min

βj ,γj

λ
n∑
i=1

u
(t)
i,j (yi−β

T
j xi− γjzi)2 + (1−λ)

n∑
i=0

u
(t)
i,j (β

T
j xi + γj z̄

(t)
i )2, (15)

end for

z̄(t+1) = arg min
z̄

n∑
i=0

k∑
j=1

u
(t)
i,j ((β

(t+1)
j )Txi + γ

(t+1)
j z̄i)

2 s.t hr(z̄0, . . . , z̄n)≤ br,∀r ∈ [s],

u(t+1) = arg min
u

k∑
j=1

[
n∑
i=1

ui,jλ(yi− (β
(t+1)
j )Txi− γ(t+1)

j zi)
2 +

n∑
i=0

ui,j(1−λ)((β
(t+1)
j )Txi + γ

(t+1)
j z̄

(t+1)
i )2

]
s.t

n∑
i=1

ui,j ≥Nmin ∀j ∈ [k]

k∑
j=1

ui,j = 1, ∀i∈ {0, . . . , n}

u0,j ≤ 1

j = arg minj′∈[k]

n∑
i=1

ui,j′‖x0−xi‖22
n∑

i=1
ui,j′

 ,∀j ∈ [k],

end for

Return β
(Nmax)
1 ,β

(Nmax)
2 , . . . ,β

(Nmax)
k , γ

(Nmax)
1 , γ

(Nmax)
2 , . . . , γ

(Nmax)
k , z̄(Nmax), u(Nmax).

Note that this approach can also be applied to regularized linear regression, such as Ridge Regres-

sion or Elastic Net.

5. Tree-Based Parametrization

In this section we set fj for j ∈ [k] to be equal to a tree ML method, such as CART (Breiman et al.

(1984)) or Optimal Trees (Bertsimas and Dunn (2017)). We apply Algorithm 1 and Algorithm 2

to this parametrization.

In order to solve Problem (6), i.e. learning the predictive function f t+1
j = arg min

fj

λ
n∑

i=1

u
(t)
i,j(yi −

fj(xi,zi))
2 + (1− λ)

n∑
i=0

u
(t)
i,jc(fj(xi, z̄

(t)
i ), z̄

(t)
i ) for each cluster j at iteration t, we use Algorithm 2

as described in Section 3. Since Algorithm 2 only requires to minimize the mean-squared error loss

over a new dataset, it can be used with both the globally optimal trees, or with the iterative CART

algorithm.

For Problem (7), there are two approaches, depending on whether the problem is constrained or

not:

1. If the problem is unconstrained, then we can find an optimum just by iterating over each

observation i ∈ [1, n] independently. For each i, we find all the possible leaves of the trained tree

to which this observation can belong, and pick one treatment that minimizes the corresponding

cost. We note that even though this number of leaves is theoretically bounded by 2d where d is the

depth of the tree, it is usually extremely small, as it corresponds to the number of splits on the

treatment z̄i for the region of space where Xi, i.e. the covariates of observations i, belongs. Even

in the case where the treatment space is large or continuous, the fact that the cost function is a
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function of the outcome yi only, which is itself a tree-based function of Xi and z̄i, the structure

of the tree makes the minimization computationally tractable: any z̄i that verifies the constraints

that would lead to the optimal leaf can be chosen as the optimal solution.

2. If the problem is constrained, then it is necessary to use heuristics, or formulate Problem (7)

as an Mixed-Integer Program. The exact formulation is given by Bertsimas et al. (2019). In our

case however, the problem is simpler because it does not require to retrain the tree, hence reducing

the number of variables of the problem by several orders of magnitude.

Problem (8) is again an assignment problem that does not depend on the chosen ML method.

We also note that once this model is trained, the decision-making process that outputs an optimal

decision z̄ given covariates x, can be described with a simple decision tree, which makes it inter-

pretable. In Section 6, we show computational results for the tree-based formulation applied in a

medical setting where interpretability is particularly relevant.

6. Experimental Results

We perform extensive experiments for both the linear and the tree-based parametrizations (applied

with Classification and Regression Trees - Breiman et al. (1984)). In the following tests, we use

multiple restarts for the local-search algorithm.

For the real-world data, since the counterfactuals are unknown, we evaluate the results with a

combination of XGBoost (Chen and Guestrin (2016)) and Feed-Forward Neural Networks (LeCun

et al. (2015)), that will be considered ground-truth for the underlying behavior.

6.1. Linear Parametrization

We test the linear parametrization on synthetic data and on an assortment problem in a real-world

case study, against the predict-then-optimize framework (with linear regression), sample average

approximation (SAA Birge and Louveaux (2011)) and linear predictive-prescriptive (Bertsimas and

Kallus (2020)).

Synthetic Data We simulate a group of n∈N patients. Each patient i∈ [n] is characterized by

p∈N features and reacts differently to a binary treatment zi ∈ {0,1} that affects a target variable

yi ∈ R that we need to predict and that we want to minimize. We note xi ∈ [0,1]p the vector of

features for patient i.

We have r ∈ N different reactions to the treatment, for each type of reaction j ∈ [r], we set yi =

βj
Txi + γjzi if and only if i belongs to group j, where βj ∈Rp and γj = 10 · ((−1)j) · (j+ 1). Note

that the direction and the magnitude of the effect of zi on yi differs in each group.

We set r= 5 and p= 4. Then, we create the groups from the following tree structure:
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• i belongs to group 1 ⇐⇒ xi,1 ≤ 0.5 and xi,2 ≤ 0.5.

• i belongs to group 2 ⇐⇒ xi,1 ≤ 0.5 and xi,2 > 0.5

• i belongs to group 3 ⇐⇒ xi,1 > 0.5 and xi,3 ≤ 0.33

• i belongs to group 4 ⇐⇒ xi,1 > 0.5, xi,3 > 0.33 and xi,4 ≤ 0.66

• i belongs to group 5 ⇐⇒ xi,1 > 0.5, xi,3 > 0.33 and xi,4 > 0.66

We draw patients uniformly from to 5 groups, and then we draw the features of the patient

uniformly and independently within the bounds that define each group. We minimize Mean Squared

Error (MSE) for the predictive cost, and c(y, z) = y2 for the prescriptive cost, similarly to Section

3.

We take the predict-then-optimize approach as a baseline, and test it against our HPA approach,

while varying the number of clusters k and selecting the best one in a validation set. We obtain

the results in Table 1 for training data and Table 2 for unseen, testing data, for this best value of

k.

Model Training MSE In-Sample R2 Prescriptive Cost Difference vs Baseline
Linear Regress-then-Prescribe 172546 78.4% 12490 0%
Sample Average Approximation 172546 78.4% 12146 -3%
Linear Predictive-Prescriptive 177045 77.9% 11912 -5%
Linear HPA 190831 76.1% 9315 -25%
Linear HPA w/ Penalization 196943 75.4% 9306 -25%
Linear HPA w/ Multiple Restarts 171094 78.6% 8706 -30%
Linear HPA w/ Pen. & Multiple
Restarts

180244 77.5% 8166 -35%

Table 1 Results of the Synthetic Data simulation (Minimization) - Training.

We notice that the HPA method substantially outperforms the other linear prescriptive methods

both in terms of prediction accuracy and most importantly in terms of prescription cost with over

30% improvement compared to baseline in both training and testing data.

In addition to that, Figure 1 (train) and Figure 2 (test) summarize the results for all tested number

of clusters k ∈ [1,10].

Model Testing MSE Out-of-Sample R2 Prescriptive Cost Difference vs Baseline
Linear Regress-then-Prescribe 184771 76.9% 11896 0%
Sample Average Approximation 184771 76.9% 11189 -6%
Linear Predictive-Prescriptive 208937 73.9% 10350 -13%
Linear HPA 200743 74.9% 9380 -21%
Linear HPA w/ Penalization 195601 75.5% 9250 -22%
Linear HPA w/ Multiple Restarts 183144 77.1% 8622 -28%
Linear HPA w/ Pen. & Multiple
Restarts

178244 77.7% 8351 -30%

Table 2 Results of the Synthetic Data simulation (Minimization) - Testing
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Figure 1 For top models: in-sample MSE on Synthetic Simulation (on left), and in-sample Treatment on

Synthetic Simulation (Lower is better on right.

Figure 2 For top models: out-of-sample MSE on Synthetic Simulation (on left), and out-of-sample Treatment

on Synthetic Simulation (Lower is better) on right. Our framework outperforms other benchmarks and recovers

the correct number of clusters.

Figure 1 and Figure 2 outline that our framework was able to recover the correct number of

clusters k= 5 from the data samples. By looking at the clusters with the majority of observations

from the initial groups and matching them accordingly, we also observe that more than 91% of

the observations a classified correctly (i.e. in the correct group) with the HPA method, and that

without imposing any tree structure.

Assortment Case Study The dataset consists of 25,000 observations, each one corresponding

to a product sales at a particular date with:

• Products Features: ex. type of product, brand, whether it is perishable or not.

• Pricing Decisions: price, whether it is promotion or not.

• Time-series Data: historical sales for the product.

• External Indicators: market features, competitors’ prices.

• Decision Variable: whether to display the product or not.

• Target Variable: number of units sold for this product SKU at this time t.
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The goal is to select products for the display of the retailer to maximize revenue. We assume

that the target variable is representative of the demand as long as the product is displayed (no

inventory limitation) and we ignore the cannibalisation effect of the products (i.e. the product

demand only depends on the features and not on the selected portfolio). Note that this is a

constrained optimization problem, since the shelf space is limited. We summarize the results in

Table 3.

Model Out-of-Sample R2 Prescriptive Cost Improvement From Baseline
Linear Regress-then-Prescribe 74 % 1404.93 0%
Sample Average Approximation 74 % 1545.79 10%
Linear Predictive-Prescriptive 73 % 1580.13 12%
Linear HPA 71 % 1508.7 7%
Linear HPA w/ Penalization 75 % 1597.22 14%
Linear HPA w/ Multiple Restarts 79 % 1641.99 17%
Linear HPA w/ Pen. & Multiple
Restarts

83 % 1643.42 17%

Table 3 Results for Invetory Dataset (Maximization)

On this real-world experiment, the linear HPA outperforms its competitors in both out-of-sample

accuracy and prescriptive cost. We might reasonably assume that the improvement in predictive

accuracy comes mainly from the fact that the clustering allows the model to capture non-linear

relationships (that are linear within each cluster but not linear over all the dataset), but that the

improvement in the predictive cost comes from performing the clustering, the prediction and the

prescription jointly instead of sequentially.

6.2. Tree-based Formulation

In this section, we move beyond linear models and use Classification and Regression Trees within

the HPA method, using Algorithm 2.

We benchmark the tree-based HPA on a diabetes case-study, against predict-then-optimize based

on point estimate (with CART). sample average approximation (SAA), tree-based predictive-

prescriptive, and prescriptive trees (Bertsimas et al. (2019)).

Diabetes Case Study The dataset consist of 100,000 observations, with patient-level data

with:

• Patient Characteristics: age, sexe, medical history, BMI, vitals.

• Previous Treatments: drugs previously taken, number of visits to care centers, treatment

history.

• Decision Variable: treatment given at this time t (11 possible treatments).

• Target Variable: average blood sugar levels.
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The goal is to prescribe the optimal treatment at time t given patient’s characteristics and the

previous sequence of treatments in order to minimize his average blood sugar levels. Note that

interpretability is key is this experiment since doctors need to understand the decision-making

process to prescribe the treatment to real patients. We summarize the results in Table 4.

Method Out-of-Sample R2 Prescriptive Cost Improvement From Baseline
CART Regress-then-Prescribe 75% 13510.1 0%
Sample Average Approximation 75% 12980.95 4%
CART Predictive-Prescriptive 73% 12624.8 7%
Prescriptive Trees 85% 11682.5 14%
CART HPA 71% 13058.97 3%
CART HPA w/ Multiple Restarts 82% 11623.18 14%

Table 4 Results for Diabetes Dataset (Mimimization).

The HPA Framework significantly outperforms all other prescriptive methods in terms of pre-

scriptive cost, with a 14% improvement from the standard paradigm predict-then-optimize and

7% improvement from the state-of-the-art predictive-prescriptive approach. Only Prescriptive

Trees are marginally behind HPA in terms of prescriptive cost, and outperform it in terms

of out-of-sample accuracy. However, the HPA Framework can accommodate constraints and

continuous treatments, which is not the case for Prescriptive Trees.

In this example, the prediction and the prescription can both be represented with a simple decision

tree, explaining how the patients are clustered into groups, and how decisions are made based on

their characteristics. This ensures the model is interpretable and easily explainable to the medical

doctors, which are in fact the decision makers in this case study.

By delving into these clusters, we observe that the grouping happens mainly over 4 features:

patient’s age, sexe, BMI and number of previous visits. The splits separates the BMI into 3 cat-

egories: Low, Average, High, the age groups into less than 30 years old, between 30 and 69 years

old, and above 69 years old. The split on age only happens for patients in one of the two first age

groups (≤ 69 years old), while the cutoff for the previous visits is 5 visits. Which results in a total

of 30 intepretable groups. Within each cluster, a different predictive tree model is trained, which

splits on drug count and previous treatments to predict sugar level and prescribe the optimal next

treatment. This example illustrates the claim that the HPA framework is interpretable when used

with interpretable ML methods.

7. Conclusions

In this paper, we introduced a novel method for prescription we refer to as Holistic Prescriptive

Analytics (HPA) framework. This framework allows for the use for a large variety of predictive ML
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methods and prescriptive cost functions. Moreover, it accommodates constrained and continuous

problems, while being scalable and providing a performance edge over the state-of-the-art prescrip-

tive methods. It also preserves interpretability of the ML models that are being used within the

framework.

The complexity analysis of the algorithm as well as the computation experiments, on synthetic data

and on two real-world case studies provide strong evidence to these claims. Its fundamental holistic

structure allows us to combine strong predictive accuracy within a powerful prescriptive framework

thanks to the clustering and the fact the three tasks (clustering, prediction and prescription) are

optimized jointly instead of sequentially.
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