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Abstract Prediction tasks in personalized medicine require models that combine ac-
curacy and interpretability. We propose an integer optimization approach for building
sparse regression models with enforced coordination, using data partitioned among
leaves in a prediction tree. We show that the method recovers the true underlying
relationship between observations and target variables in large-scale synthetic data
in seconds. We apply our method to several real-world medical prediction problems
and observe that the additional structure imposed provides a substantial gain in inter-
pretability, at a low cost to accuracy.

Keywords prediction trees · regression · integer optimization · personalized
medicine

1 Introduction

Motivated by by applications of medicine, we aim to develop machine learning mod-
els that combine state of the art accuracy and interpretability. We focus on three medi-
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cal prediction tasks that require capturing highly nonlinear relationships between fea-
tures and continuous target variables. Currently, the most popular methods for such
problems include decision trees (classification and regression trees), random forests,
and boosted trees.

Deep learning and ensemble models (including random forests and boosted trees)
achieve state of the art accuracy, but are not interpretable. This limits their applica-
bility in areas where understanding the rationale of a model’s prediction is important.
On the other hand, sparse regression models and decision trees aspire to be inter-
pretable, but have weaker out of sample accuracy. In this paper, we combine ideas
from new developments in sparse regression and classification and regression trees to
propose a method that is interpretable, and also provides state of the art accuracy.

To motivate the method, assume we have data (xi,yi), i ∈ JnK with xi ∈ Rp, yi ∈
R, and JnK are the integers 1, . . . ,n. Let xi represent electronic medical records of
patient i and yi represent a medical outcome, for example, glucose levels of patient
i. Applying Optimal Regression Trees (ORTs) from [10] gives rise to trees such as
that depicted in Figure 1.1. In each of the leaves L1,L2, the outcome is predicted as a

Past HbA1c < 6.31

0.009 mean BMI +

0.05 HbA1c change

true

0.05 age +

0.06 past HbA1c

false

Fig. 1.1: Example of an Optimal Regression Tree of depth one for predicting blood
glucose levels.

regression ŷi = w>j xi for all j ∈ JJK, J = 2. This allows different features in each leaf
to affect the prediction.

Suppose we impose the additional constraint that the support of each vector w j
is the same for all leaves and in addition the cardinality of this support is limited.
That is, |supp(w j)| ≤ q for some positive integer q, and supp(w j) = supp(wk), for
j,k ∈ JJK. With this criterion, the regression in each leaf is sparse when q is small,
and coordinated among leaves to involve the same variables. This increases the in-
terpretability of the model significantly. Specifically, in the uncoordinated case, it is
possible that past HbA1c affects glucose level in some leaves while not in others,
which is medically implausible.

This setting leads us to consider the following general problem. Given input data
X = (x1, . . . ,xn), response data data y = (y1, . . . ,yn), and a partition within clusters
L j such that ∃ j ∈ JJK : (xi,yi) ∈ L j,∀i ∈ JnK, we wish to solve:

min
w

1
2γ

∑
J
j=1 ||w j||2 +∑

J
j=1 ∑i∈L j(yi−w>j xi)

2 (1.1a)

s.t. ||w j||0 ≤ q ∀ j ∈ JJK (1.1b)
supp(w1) = . . .= supp(wJ). (1.1c)
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The term 1
2γ ∑

J
j=1 ||w j||2 is a Tikhonov [17] regularization term, that makes the over-

all model more robust [2] and γ is a parameter to be tuned. Problem (1.1) reduces to
the sparse regression problem studied by Bertsimas and Van Parys [4] when J = 1.

1.1 Existing methods

Recently introduced in [10, 3], ORTs are a predictive tool similar to CART [9]. Given
a loss function, ORTs are constructed so that this function is minimized with respect
to local neighborhoods in the tree. ORTs have a higher degree of interpretability than
black-box methods such as random forest and boosted trees, while attaining compa-
rable performance in terms of predictive accuracy. In addition, ORTs have notably
higher predictive accuracy than CART [10].

Linear regression models at the nodes of ORTs are currently computed heuristi-
cally [3]. These regression models are either point predictions, or linear models built
using Lasso [16]. This has several shortcomings. As shown by Bertsimas et al. [5],
while Lasso generally performs well at the task of discovering relevant features, it
also selects a significant number of features that are not part of the true support. This
hinders the interpretability of trees because often a large number of features are se-
lected in the support of the linear models, and it is unclear which features are truly
relevant. Second, the use of heuristics for sparse linear regression does not leverage
the potential of optimal regression methods.

A powerful approach for building sparse regression models with an explicit con-
straint on the zero norm of the weights vector was proposed in [4]. The authors
showed that the method outperforms Lasso in terms of accuracy, and particularly
in false recovery rate on a test set of problems. The paper also introduced the phe-
nomenon of phase transitions for the exact sparse regression problem. That is, at a
critical number of observations, the performance of the algorithm peaks in terms of
accuracy and false detection, and improves in terms of computational speed. This is
a notable empirical result, as it puts in question the commonly held belief that ex-
act algorithms are not comparable in practice with heuristics for solving large scale
regression problems.

1.2 Contributions

There is currently no approach that leverages the interpretability and predictive power
of integer optimization methods for regression together with tree based methods. To
that end, we propose an integer optimization approach for building linear models that
can be naturally applied to prediction trees. The technique we propose, called Spar-
Clur (sparse cluster regression), computes a number of regression models simultane-
ously at different leaves in a tree, and enforces coordination between nodes by requir-
ing the support within all regression models to be the same. We follow the approach
initiated by [4], and include the additional requirement of coordinated sparsity in or-
der to improve performance and interpretability in real-world prediction problems.
We demonstrate the validity of SparClur using real medical datasets. Specifically, we
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show that imposing the coordination constraint (1.1c) is computationally inexpensive
while the formulation results in similar accuracy to the uncoordinated problem. Using
synthetic data, we demonstrate that SparClur recovers the true support while ignoring
irrelevant features for large problems in seconds.

We present a formulation and describe an algorithm for solving Problem (1.1)
in the next section. In Section 3, we test the performance of solutions generated by
SparClur in synthetic datasets. In Section 4, we apply the same approach to three
high dimensional medical problems. Since we cannot make the medical datasets pub-
lically available, we repeat our experiments on a publicly available dataset related to
real estate pricing. All our code is available at: https://github.com/SparClur/
SparClur.jl .

2 Problem formulation

Let s ∈ {0,1}p denote the common support of all sparse weight vectors. Let S be a
diagonal matrix with elements of s. The problem that SparClur seeks to solve can be
written as:

min
w,s

1
2γ

∑
J
j=1 ||w j||22 +

1
2

∑
J
j=1 ∑i∈L j

(
yi−x>i Sw j

)2 (2.1a)

s.t. 1>s≤ q (2.1b)
w ∈ Rp,s ∈ {0,1}p (2.1c)

where γ > 0.

Lemma 1 Let (X j,y j) denote the slices of (X,y) containing rows that belong to
cluster j. Problem (2.1) is equivalent to solving:

min
s∈D

1
2

∑
J
j=1

[
1
2

y>j
(
In + γ ∑

p
i=1 siKi

j

)−1
y j

]
(2.2)

where D = {s ∈ {0,1}p : 1>s ≤ q}, Ki
j = Xi

jXi>
j , and Xi>

j is a column of X j that
pertains to feature i.

Proof The proof follows by the same argument as in [4, Lemma 1]. For a fixed sup-
port vector s, the objective is equal to:

c(s) =
1
2

∑
J
j=1

[
y>j

(
In + γX jSX>j

)−1
y j

]
,

where the optimal weights for cluster j are used:

w∗j =
(

1
γ
Ip +(X jS)>X jS

)−1

(X jS)>y j. ut (2.3)
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The convexity of the objective function in s enables us to apply an outer approxi-
mation algorithm [12] to solve (2.2). It is convenient to consider the dual of Problem
(2.1) with s fixed in order to derive the form of the cuts. The dual has the following
form [4]:

max
α j , j∈JJK

−γ

2
∑

J
j=1 α>j K j(s)α j−

1
2

α>j α j +y>j α j (2.4a)

s.t. α j ∈ Rn j ∀ j ∈ JJK, (2.4b)

where K j(s) = X jSX>j and n j is the number of observations in cluster j. The vari-
ables α j can be interpreted as the Lagrangian duals corresponding to constraints of
the form y j = X jSw j. As (2.4) is an unconstrained quadratic problem, we can derive
a closed form solution for the optimal dual variables α∗j :

α
∗
j = (In + γK j)

−1 y j ∀ j ∈ JJK. (2.5)

Now, at a given candidate solution s, we have that our kernel matrices K j(s) are
differentiable and furthermore

dK j(s)
dsi

= Xi
jX

i>
j ∀i ∈ JpK, j ∈ JJK,

so we can always attain a subgradient [4, Lemma 2]:

∇c(s) =−γ

2
∑

J
j=1 α∗>j

dK j(s)
ds

α∗j . (2.6)

In practice, to avoid computing the inverse of the n× n matrix in (2.5), we compute
the capacitance matrix as in Bertsimas and Van Parys [4, Equation 20]. This gives
rise to Algorithm 1.

Besides the exact cutting plane algorithm, we can use an algorithm for the convex
relaxation of (2.1) such as the subgradient descent method suggested in [7]. The con-
vex relaxation is useful for providing warm starts to a mixed integer solver, but can
also provide high quality solutions on its own. The convex relaxation takes the form:

min
s∈conv(D)

max
α j∈R

n j
f (α1, . . . ,αJ ,s), (2.7)

with f (α1, . . . ,αJ ,s) =
−γ

2
∑

J
j=1 α>j K j(s)α j −

1
2

α>j α j + y>j α j. We can exchange
the order of the minimization and maximization operators, so (2.7) is equivalent to:

max
α j∈R

n j
∑

J
j=1 y>k α j−

1
2

α>j α j− max
s∈conv(D)

g(α1, . . . ,αJ) (2.8)

with g(α1, . . . ,αJ) =
γ

2
∑

p
i=1 siα

>
j Xi

jXi>
j α j. The inner maximization problem always

has at least one analytic solution that can be constructed by finding q indices i where
α>j Xi

jXi>
j α j take on the largest values in order, and assigning si = 1 to those indices.

The outer maximization problem can be solved via a nonsmooth optimization algo-
rithm. That is, for a given candidate dual solution α̂1, . . . , α̂J we analytically compute
the optimal support vector and a subgradient ∇ f (α̂1, . . . , α̂J ,s) and apply a suitable
global first order method to Equation (2.8).
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Algorithm 1 SparClur

Input: X j ∈ Rn j×p,y j ∈ Rn j ,∀ j ∈ JJK,q ∈ JpK,γ ∈ R+

Output: s ∈ {0,1}p

1: procedure CUTTING PLANE ALGORITHM
2: s1← warm start
3: η1← 0
4: ν ← 0
5: c(s1)← ∞

6: while ην < c(sν )
7: ν ← ν +1
8: for j ∈ JJK
9: Xs, j ← X j[:,s]

10: α∗j ← y j−Xs, j(Iq/γ +X>s, jXs, j)
−1X>s, jy j

11: c(sν )←
1
2

∑
J
j=1 y>j α∗j

12: for i ∈ JpK
13: ∇c(sν )i←−

γ

2
∑

J
j=1(Xi>

j α∗j)
2

14: s
ν+1,ην+1← argmins,η{η : η ≥ c(st)+∇c(st)

>(s− st),∀t ∈ JνK,s ∈ {0,1}p,1>s≤ q}

3 Experiments with synthetic data

We address three key questions:

1. Does our mixed integer formulation recover correct solutions to the sparse regres-
sion problem, particularly in the presence of noise?

2. Does SparClur enjoy practical solving times as the dimensionality of a problem
grows?

3. What is the cost of imposing the assumption of common support among clusters,
when there is no such phenomenon in the underlying data?

We define accuracy A and false positive rate F as follows. Let supp(wtrue) denote
the known true support in a synthetic dataset. Then for solution w∗ we have:

A =
|supp(wtrue)∩ supp(w∗)|

q

F =
|supp(w∗)\ supp(wtrue)|

|supp(w∗)|
.

All time related experiments were performed on a Linux system with an AMD
Ryzen 9 3950X 16-Core processor. Our algorithms were implemented in Julia [8],
and all optimization problems were built using JuMP [11] and solved in Cplex 12.10.
The problem in Line 14 of Algorithm 1 was modified in each iteration using lazy
callbacks.

3.1 Support recovery

Each entry of a matrix X∈Rn×p was independently generated from a standard Gaus-
sian distribution for n ranging between 60 and 800 observations and p = 2000. Our



Sparse Regression over Clusters: SparClur 7

observations were randomly and evenly divided among J clusters. The value of J
was varied in the range {1,2,5,10,20}. The set of features in the support was fixed
with 10 randomly selected features. For each feature i in the true support, a corre-
sponding coefficient wi ∈ {−1,1} was sampled. The target variables were computed
as y j = X jw j +ξ j, where ξ j ∼ N(0,Σ) was scaled so that we have a signal-to-noise
ratio ||y j||/||ξ j||= 20.

We generated five synthetic datasets as described above for varying values of
n, and report the mean out of sample accuracy and false positive rate for each n.
These are shown in the plots of Figure 3.1. For each datapoint shown, the value of γ

was taken to be some constant multiplied by q/n. This value was picked following
a cross validation procedure, where we picked the value of γ that gave the highest
MSE on separated data. The plots demonstrate the occurrence of a phase transition,
and demonstrate that the point of this phase transition depends on the number of
observations in each cluster and the number of clusters.

3.1.1 Time of phase transition

Our experiments confirm the phenomenon observed by Bertsimas and Van Parys [4],
where the solving time of a problem begins to decrease once some critical number
of observations is exceeded. This has an interesting implication for the SparClur for-
mulation. As an example, consider the computational time for the synthetic problem
described above, shown in Figures 3.2a for J = 1 and 3.2b for J = 5. For a modeler
computing regression weights at several leaf nodes, it is desirable for the number
of observations at each leaf to be greater than the critical value mentioned, since
this results in significantly lower solving times. A key advantage of SparClur is that
the coordination imposed reduces the number of observations necessary to attain the
solving times observed beyond the phase transition. For the case illustrated in Figures
3.2a and 3.2b, if a model consisted of five leaf nodes, then around 300 observations
would be sufficient to achieve phase transition with SparClur. On the other hand, the
single cluster model experiences a phase transition beyond 120 observations, mean-
ing that if a modeler was to use an uncoordinated regression model at each leaf,
5×120 = 600 observations would be necessary.

3.2 Scalability

Table 3.1 summarizes the solving times we observe as we increase the number of
observations to the range of the hundreds of thousands, and the number of features
to the tens of thousands. At this scale, we are able to recover the full support with no
false detection for all instances in seconds.

3.3 Effects of clusters with varying support

We now explore the behavior of SparClur when it is applied to observations that do
not truly share the same support. To do so, we generate data for observations X j and
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Fig. 3.1: Accuracy and false positive rate as a function of number of observations for
synthetic data with SNR=20, q=10. Each curve passes through the average measure-
ment made over five sets of synthetic data and error bars correspond to one standard
deviation.

y j as described in the previous section, with the number of clusters J = 2. The weights
for each cluster w1,w2 were generated so that there are 10 features in the true support
of each cluster, but not necessarily the same 10 features in both clusters. The number
of features in {supp(w1)∩ supp(w2)} was varied.

When we come to build a model for our synthetic data, we must assume some
underlying sparsity q which may be lower than, or greater than, the total number of
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Fig. 3.2: Computational times in seconds as a function of number of observations.

time

γ p n = 20,000 n = 50,000 n = 100,000

0.005 20,000 2.52 4.51 8.38
0.01 20,000 1.7 4.08 7.73
0.02 20,000 1.69 4.08 7.73
0.005 50,000 4.83 10.65 19.88
0.01 50,000 4.67 10.39 19.4
0.02 50,000 4.71 10.36 19.46

Table 3.1: Computational times in seconds (mean over five datasets) for different
values of n, p, and γ with J = 10. In each experiment accuracy was 100% and false
positive rate was 0%.

features in both clusters. When q < |supp(w1)∪ supp(w2)|, it is not possible to attain
an accuracy of 100%. Instead, the maximum attainable accuracy is q

|supp(w1)∪supp(w2)|
.

In Figures 3.3 and 3.4, the dashed curves correspond to the maximum attainable
accuracy. The points correspond to the accuracy attained each time the problem is
solved with SparClur. In every case, the accuracy matches closely with the maximum
attainable accuracy, and we never detect any features not in the support of one of the
two clusters, except when q > |supp(w1)∪supp(w2)|. We do not claim, however, that
when q< |supp(w1)∪supp(w2)|, features in the support of both clusters, |supp(w1)∩
supp(w2)|, are always in the set of features discovered. Rather, any of the features in
either support vector may be in the solution.

In practice, the choice of q would be determined following a cross validation
procedure. We wish to ensure that the correct value can be recovered when the ground
truth is not known. Figure 3.5 shows the out of sample R2 for different values of q.
We see that the best choices of q are 18 in the first experiment, and 15 in the second
experiment from the figures. These values conform with |supp(w1)∪ supp(w2)|.

3.4 Findings from synthetic experiments

Our experiments confirm that:

1. The algorithm recovers the true support in a set of features when this support is
known, and is capable of successfully ignoring irrelevant features.



10 Dimitris Bertsimas et al.

5 10 15 20

0.20

0.40

0.60

0.80

1.00

q

A

5 10 15 20

0.05

0.10

0.15

0.20

q

F

Fig. 3.3: Accuracy and false positive rate when |supp(w1)∩ supp(w2)|= 2.
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Fig. 3.4: Accuracy and false positive rate when |supp(w1)∩ supp(w2)|= 5.
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Fig. 3.5: Out of sample R2 as a function of q for two clusters without fully coordinated
support.

2. The algorithm is practical for offline problems where the number of observations
is in the hundreds of thousands, and the number of features is in the tens of thou-
sands. That is, we can attain high quality solutions for problems of such scale in
seconds. Furthermore, the quality of solutions for a fixed number of features has
the potential to be higher with SparClur than with uncoordinated sparse regres-
sion, because we often require a smaller number of observations to be present
before the phase transition phenomenon occurs.

3. When q was chosen to be smaller than the total number of relevant features, no
features which were not part of the true support were present in our models. When
the underlying regression models in clusters do not truly share a common sparsity
pattern, there is a tradeoff to be made between interpretability (which improves
as q decreases) and accuracy (which improves up to a limit as q increases).
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4 Experiments with real world data

The first medical prediction task we look at is the problem of predicting glucose
levels in diabetes patients. Oftentimes, clinicians intuitively use a uniform series of
questions to arrive at an estimate for patient outcomes. Key characteristics of the
patient such as weight, age, and medical history could be taken into consideration.
However with an algorithmic approach, different models can be applied to predict
glucose levels in different patients. The second dataset we turn our attention to is
derived from the Framingham Heart Study [1]. The same dataset has been used to
study a number of medical conditions, due to the richness of the features collected
and the longitudinal aspect of the study. Here, our goal is to predict two outcomes of
interest: the change in blood pressure of patients at subsequent visits, and the time of
stroke occurrence from the first observation of a subject. In addition, we test SparClur
using a low dimensional, publicly available dataset from [13]. The dataset is used to
predict sale prices of houses in King County, Washington State.

4.1 Description of data

For the glucose prediction problem, we obtained electronic medical records (EMR)
of 10,806 Boston Medical Center (BMC) patients who met the inclusion criteria de-
scribed in [6]. We had access to demographic data, including date of birth, sex, and
ethnicity, and to all BMC EMR data, including a history of drug prescriptions and
measurements of height, weight, BMI, and HbA1c (an indicator of past blood sugar
levels) as well as creatinine levels. All together, the model considered 85 features.

The Framingham Heart Study contains the examination data of 41 clinical exams
from 1948 to 2010. Our data comprises two cohorts. The Original Cohort is a ran-
dom sample of 5,209 respondents between 30 and 62 years of age, tracked from 1948
until 2010. The Offspring Study Cohort was initiated in 1971 comprising 5,124 adult
offspring of the Original Cohort. Unifying the two cohorts, we have patient charac-
teristic data at each visitation for 10,092 unique patients. Recorded characteristics
include age, gender, and BMI, as well as biological information derived from blood
test results.

For the time of stroke prediction problem, we considered only the 10% of pa-
tients who experienced a stroke. We retained health information from patients’ initial
baseline visit and computed the number of days from when that data was collected to
the date of their first occurrence of stroke. Overall, the model we built had 1,266 ob-
servations and 40 features. For the blood pressure prediction problem, we calculated
the change in systolic blood pressure of all patients between consecutive visits, and
treated each pair of consecutive visits as an observation. The final model had 91,955
observations and 41 features.

The dataset for house sale price predictions contained 21,613 observations with
18 features describing each property. The features used and output from ORTs are
available with our code [14].
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SparClur

depth Lasso point exact relaxation sparse

0 0.506 0.000 0.499 0.464 0.464
1 0.521 0.323 0.514 0.498 0.490
2 0.524 0.438 0.517 0.502 0.490
3 0.532 0.476 0.524 0.509 0.490
4 0.535 0.502 0.530 0.525 0.495
5 0.535 0.511 0.530 0.526 0.497

Table 4.1: Mean (over five folds) out of sample R2 for prediction of glucose levels
using different depths.

4.2 Comparison of methods

We examined the performance of ORTs with point predictions at leaf nodes, as well
as linear prediction models at leaf nodes. When using linear prediction models, we
compared the performance of SparClur with several other techniques. All linear pre-
diction models were constructed after the optimal regression tree (with point predic-
tions at the leaves) was found and the parameters for the tree were cross validated to
minimize the MSE. The leaves of each tree were treated as clusters. We considered
building linear models using Lasso (with the implementation in [15]), sparse regres-
sion (without coordination as in [7]), SparClur with Algorithm 1, and the convex
relaxation of SparClur.

We set a time limit of two minutes in CPLEX and used the incumbent solution if
the time limit was reached. When using uncoordinated sparse regression, we did not
employ an exact cutting plane algorithm, but used the convex relaxation suggested
by Bertsimas et al. [7]. This is because training and cross-validating for appropri-
ate parameters using uncoordinated sparse regression, which involves building linear
models within each leaf separately, would take over a week of computational time for
our deepest trees, which we consider impractical.

We measured the average out of sample accuracy from five different training and
testing splits of our data and report the averaged out of sample R2 for trees of in-
creasing depth. Our results are summarized in Tables 4.1 to 4.4. Each tree was cre-
ated using the software package OptimalTrees.jl described in [10] and for each
regression model, the hyperparameters q (in the range 1—10) and γ were chosen fol-
lowing a cross validation procedure. We chose to restrict the sparsity of our models to
10 features (including a bias term) or fewer, as we consider this to be an appropriate
number of features for clinicians to interpret.

The models created for glucose and blood pressure prediction attained R2 scores
of around 0.5. The best models we produced for the time of stroke prediction problem
(which had the fewest observations) attained R2 scores of 0.3–0.4. The best models
we produced for predicting house prices, attained R2 scores of 0.7–0.8.

In each example, the trees we obtained with sparse regression methods had fewer
features than the trees obtained with Lasso at the leaves. This difference was more
significant for the medical datasets. In Table 4.5, we show the minimum, maximum,
and mean number of features that appear per leaf using uncoordinated sparse re-
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SparClur

depth Lasso point exact relaxation sparse

0 0.364 -0.005 0.352 0.261 0.261
1 0.359 0.172 0.365 0.303 0.272
2 0.358 0.234 0.350 0.312 0.316
3 0.357 0.253 0.342 0.316 0.320
4 0.357 0.253 0.341 0.316 0.320
5 0.357 0.253 0.341 0.316 0.312

Table 4.2: Mean (over five folds) out of sample R2 for prediction of days until stroke
onset using different depths.

SparClur

depth Lasso point exact relaxation sparse

0 0.306 0.000 0.296 0.281 0.281
1 0.341 0.151 0.328 0.319 0.300
2 0.521 0.372 0.516 0.503 0.465
3 0.527 0.459 0.523 0.513 0.468
4 0.528 0.487 0.522 0.518 0.506
5 0.528 0.498 0.524 0.520 0.506

Table 4.3: Mean (over five folds) out of sample R2 for prediction of change in blood
pressure using different depths.

SparClur

depth Lasso point exact relaxation sparse

0 0.693 0.00 0.691 0.684 0.684
1 0.750 0.314 0.742 0.719 0.711
2 0.780 0.491 0.774 0.735 0.734
3 0.815 0.605 0.814 0.786 0.791
4 0.823 0.660 0.823 0.809 0.810
5 0.826 0.697 0.831 0.820 0.818

Table 4.4: Mean (over five folds) out of sample R2 for prediction of house prices
using different depths.

gression, Lasso and SparClur for a tree of depth five (this depth is typically where
out-of-sample R2 values begin to plateau). The values in the table are averaged over
five folds of data. To get a sense of the interpretability of these models, we also report
the number of features that appear in more than half of the leaves, and the number
of features that appear in fewer than half of the leaves. Note that it is possible (but
rare) for certain features to appear in only some leaves when using SparClur, since
our parameter q is only an upper bound on the number of nonzero coefficients.
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# features per leaf # features repeating

min max mean > half ≤ half

gl
uc

. Lasso 1.0 52.2 21.2 6.8 74.0
sparse 7.0 9.4 9.3 4.4 44.8
SparClur 7.2 9.0 8.83 9.0 0.0

pr
es

s. Lasso 0.2 34.4 14.3 6.4 31.2
sparse 9.8 10.0 9.99 6.0 29.8
Sparclur 5.6 9.6 8.6 8.6 0.0

da
ys

. Lasso 0.2 16.6 8.5 2.8 16.2
sparse 6.6 6.6 6.6 4.6 7.6
Sparclur 5.2 6.8 6.0 5.8 0.4

ho
us

e Lasso 1.0 16.0 10.5 12.0 6.0
sparse 3.2 10.0 8.9 7.8 10.2
SparClur 9.8 9.8 9.8 9.8 0.0

Table 4.5: Minimum, maximum, and mean number of features per leaf in a tree of
depth 5, as well as number of features that repeat in more than half the leaves and
fewer than half the leaves. All values are averaged over five folds. The total number
of features in the datasets were 85, 40, 41 and 18.

4.3 General trends

The results in Tables 4.1 to 4.3 and 4.5 display some interesting patterns. Within
the medical datasets, each of the regression methods examined attained an R2 score
within 5% of the other methods, apart from the point-prediction model for time of
stroke. Yet, the difference in interpretability between the models is substantial. In
particular, the results in Table 4.5 show that Lasso gave rise to models where the
number of features in each node was highly variable, and some nodes included more
than half the features in the data. Furthermore, Table 4.5 shows that both Lasso and
uncoordinated sparse regression gave rise to relatively few features that appear in
more than half of the leaves, and many features that appear in fewer than half of the
leaves, although it does not make medical sense for so many features to affect only
subsets of the population. Given that the difference in interpretability between the
models is significant, the similarity in R2 scores demonstrates that the price to be
paid for imposing additional structure that favors this interpretability is small.

Interestingly, the uncoordinated sparse regression model had inferior out of sam-
ple performance to optimal regression trees with point predictions in the glucose
prediction problem, and inferior performance to SparClur in the other problems. This
would typically be an indicator of overfitting. In this case, the behavior could be
an artifact of a large number of clusters and an insufficiently large number of ob-
servations within each cluster to attain good performance with uncoordinated sparse
regression. The performance of SparClur is always favorable compared to point pre-
dictions at high depths. We also make the observation that the optimization of the
exact coordinated regression problem provides a relatively small improvement in the
out of sample R2 over the relaxation solution in each case study, which was used as a
warm start.
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For stroke prediction, the tree structure did not provide as much lift (depth 0/1
performed best). For the other cases, however, the R2 increased significantly with
depth. This could be because the features in the stroke prediction problem did not
differ much in the leaves, indicating that the problem is more uniform across certain
demographics than believed.

5 Conclusions

We offer SparClur as an approach for building regression models within tree based
prediction methods, combining the goals of accuracy and interpretability. SparClur
enforces additional structure within predictive models, but leads to models that are
arguably more interpretable than other linear regression methods. Furthermore, we
have shown with synthetic data that the method is correct, scalable, and capable of
attaining more favourable results than sparse regression without coordination when
the number of observations available is below a certain threshold. In the large scale
datasets we studied, SparClur improves on the accuracy of ORTs with point predic-
tions, and has very similar out of sample accuracy to models utilizing uncoordinated
sparse regression, and Lasso. In other words, we see a substantial gain in interpretabil-
ity at a very small cost to accuracy.

Data Availability Statement

All synthetic datasets and all publicly available datasets are available to interested
readers. Medical data are protected under privacy rules and are not available.
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