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Abstract

We address the problem of prescribing an optimal decision in a framework where its cost depends on
uncertain problem parameters y that need to be learned from data. Earlier work, e.g., hannah2010nonparametric;
bertsimas2014predictive, proposes prescriptive formulations based on classical machine learning meth-
ods using supervised training data [(x̄1, ȳ1), . . . , (x̄n, ȳn)]. These prescriptive methods factor in additional
observed contextual information x = x0 on a potentially large number of covariates to take context spe-
cific actions which are superior to any static decision. Such naive use of limited training data may,
however, lead to gullible decisions which are over-calibrated to one particular data set. The correspond-
ing phenomenon in prediction problems is well known as overfitting. In this paper, we combine ideas from
robust optimization and the statistical bootstrap by efron1982jackknife to propose a novel prescriptive
method based on balloon estimation learning which natively safeguards against overfitting. Our robust
prescriptive method reduces to a tractable convex optimization problem. We illustrate our data-driven
decision-making framework and our novel robustness notion on several numerical examples.

Keywords: Data Analytics, Distributionally Robust Optimization, Statistical Bootstrap, Nadaraya-
Watson Learning, Nearest Neighbors Learning

1 Introduction

In practice decisions need to be taken despite the fact that the cost L(z, y) of any potential choice z also
depends on an unknown stochastic parameter y. Stocking goods under uncertain customer demand or
devising profitable investment strategies when facing volatile returns would be two practical examples. In
a setting where decisions need to be made repeatedly, it is argued by shapiro2014lectures to take action
based on the stochastic optimization formulation

z? ∈ arg min
z

EY ? [L(z, y)] . (1)

The action ultimately chosen achieves a minimal cost as measured by the expected value of its loss L(z?, y)
with respect to the parameter y distributed as Y ?. We make the following standing assumption as to ensure
that our stochastic optimization problem is a well-posed convex problem.

Assumption 1 (Loss function). The loss function L(z̄, ȳ) in R+ ∪ {+∞} is convex in z̄ for any ȳ and a
measurable function of ȳ for any z̄.

We assume here implicitly that the minimization over z is only over dom(EY ? [L(z, y)]). For the sake
of simplicity, we also assume that the decision z ∈ Rdim(z), and the random variables y ∈ Rdim(y) and
x ∈ Rdim(x) take values in finite dimensional vector spaces. This stochastic optimization formulation makes
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sense only when nothing beyond the distribution of the stochastic variable y is known before a decision is to
be made. Often however, additional information concerning a potential large number of covariates x such as
weather forecasts, Twitter feeds, Google Trends data, . . . , can be obtained before we need to commit to our
decision. After observing a particular context x = x0, the decision should take this additional information
into account. A portfolio manager may for instance alter strategy when given prior notice about a relevant
Twitter storm surrounding one of his assets. If decisions are to be made in a particular observed context,
encoded here as x = x0, the problem in need of attention should not be the classical stochastic optimization
problem (1) but rather

z?(x0) ∈ arg min
z

ED? [L(z, y)|x = x0] (2)

The distributional model D? must represent here the joint distribution of both the parameters y as well as
the auxiliary covariates x. The action z?(x0) has hence minimal cost as measured by the expected value of
its loss L(z?, y) conditioned on all observed covariate contextual information. Technically, the conditional
expectation ED? [L(z, y)|x = x0] is a random variable and ambiguous for events of measure zero. That is, the
inclusion in (2) can hold merely almost surely; see for instance billingsley2008probability. All statements
in this paper involving the observation x0 should be interpreted to hold hence as X?-almost surely where
X? is the distribution of the covariates x. In a special case when X? is finitely supported then (2) simply
holds for all observations in the support. To avoid trivialities we do assume that the support counts more
than one covariate observation.

The prescription problem (2) has been studied extensively since at least wald1950statistical in the context
of statistical decision theory. As statistical learning is most often concerned with prediction problems,
loss functions such as L(z̄, ȳ) = (z̄ − ȳ)2 are of particular concern. The textbook solution as found for
instance in friedman2001elements is in this particular case given as the conditional expectation z?(x0) =
ED? [y|x = x0]. The prescription problem (2) can also be reduced to the stochastic optimization problem
(1) by taking as Y ? instead the conditional distribution, denoted D?(x = x0), of the uncertain problem
parameters y in the particular observed covariate context x = x0. As the prescription problem requires
stochastic optimization it inherits its shortcomings. nemirovski2006convex have shown that stochastic
optimization problems tend to be computationally unattractive even despite their convex nature for all but
the simplest of problems. Even worse, no distributional model D? can reasonable be expected to be observed
directly in practice. Indeed, distributions are a product of modeling uncertainty rather than being a directly
observable primitive. This make the classical optimization formulation (2) not particularly well suited for
modern decision-making.

Only historical data concerning both uncertain parameters and contexts is typically ever directly available in
practice. Data instead of distributions should hence be the primitive for decision-making under uncertainty.
The primitive object on which to base decisions is in practice often

tr := [d̄1 = (x̄1, ȳ1), d̄2 = (x̄2, ȳ2), . . . ]. (3)

consisting of historically observed uncertain outcomes and contexts. chen2015statistical discusses specific
situations in revenue management in which previous decisions are treated as historical data as well. Unlike
the stochastic parameters y and covariates x, the data points in the training data are deterministic historical
observations. We make this important distinction explicit with the symbol “ ·̄ ” Typically only a limited
number n of historical observations can be used as a training data set. We will denote with tr[n] the training
data set consisting of the first n observations. As opposed to a time series, the order of the data points in
a training set is of no importance. The statistical information of the first n training data samples is thus
captured without loss by its empirical distribution Dtr[n] := 1

n

∑
(x̄,ȳ)∈tr[n] δ(x̄,ȳ) and the total number of

data points n. This particular notation has the benefit that it alludes to the fact that whereas decisions are
classically based on a distributional model D?, data-driven approaches should favor its empirical counterpart
Dtr[n] based on training data. Whereas the distributional model D? has support Ω, the training set contains
observations of only at most n distinct outcomes. We denote with D and Dn the sets of all distributions
supported on Ω and Ωn, respectively. We have hence Dtr[n][Ωn] =

∑
(x̄,ȳ)∈Ωn

Dtr[n][x̄, ȳ] = D?(Ω) = 1 where

Ωn ⊆ Ω with cardinality |Ωn| ≤ n.
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Data-Driven Formulations

Making decisions based on supervised data is a timely topic and has received considerable attention in the lit-
erature. Much of the results in the early line of work based on the pioneering results of wald1950statistical
are primarily focused on the existence of minimax optimal decision functions ztr[n](·) with computational
tractability being only a secondary concern. We refer to berger2013statistical for a recent exposition on
statistical decision theory. The need for more computationally oriented strategies was greatly advanced by
the work on empirical risk minimization by vapnik2013nature.

Empirical-Risk-Minimization: The prescription problem (2) can alternatively be defined through the risk
minimization formulation z?(·) ∈ arg minz(·)∈F ED? [L(z(x), y)] over the set of all functions F mapping
covariates to decisions. One could hence consider a data-driven prescriptor mapping an observed context to
a decision as the solution to

ztr[n](·) ∈ arg min
z(·)∈C

1

n

∑
(x̄,ȳ)∈tr[n] L(z(x̄), ȳ) (4)

where C is a set of functions with suitable properties. Here C must be a strict subset of the set of all
functions F as to avoid overfitting and encourage generalization. rudin2014big consider in particular
the class C = Flin consisting of all linear functions. As an added benefit, the empirical risk minimization
problem (4) then reduces to a convex problem in the coefficients describing the linear functions in Flin.
Empirical-risk-minimization formulations enjoy a finite sample generalization performance which depends
explicitly on the complexity of the class C; see for instance rudin2014big; bertsimas2014predictive.
By explicitly constraining the prescriptor to be an element of Flin, bias is introduced when z?(·) 6∈ Flin.
There is indeed no reason in general to expect that z?(·) should possess a linear structure. As pointed out
by bertsimas2014predictive constraints on the decision z may take gives rise to nonlinearities which are
particularly challenging to deal with. rudin2014big do consider nonlinear prescriptions ztr[n](·) implicitly
via the introduction of auxiliary nonlinear transformed covariates. This however comes at an increased
computational burden and ultimately limits the applicability of this formulation as a general data-driven
decision tool. In this paper we will focus on formulations of an entirely different nature instead.

Estimate-Then-Optimize: An alternative way to make decisions based on data is to first construct an
estimate Dn

tr[n](x = x0) based on the given training data set of the conditional distribution D?(x =

x0) of the uncertain problem parameter y in context of interest x = x0 . Such estimates can be ob-
tained using a variety of conditional density estimation methods. hannah2010nonparametric consider
a classical learning method proposed independently by watson1964smooth; nadaraya1964estimating.
bertsimas2014predictive consider additional formulations based on nearest-neighbors learning discussed
in altman1992introduction, and regression trees and random forest learning proposed by breiman2001random.
Denote with EnDtr[n]

[L(z̄, y)|x = x0] =
∫
L(z̄, y) dDn

tr[n](x = x0) the expected loss of a given decision z̄ con-

sistent with the obtained conditional estimate of the uncertain problem parameter y in context of interest
x = x0 based on the given training data set. Our notation here alludes to the fact that EnDtr[n]

[L(z̄, y)|x = x0]

is an asymptotically unbiased estimate of the unknown cost ED? [L(z̄, y)|x = x0] based on supervised training
data. Estimate-then-optimize formulations prescribe an action which minimizes the estimated cost, i.e.,

ztr[n](x0) ∈ arg min
z

EnDtr[n]
[L(z, y)|x = x0] . (5)

We will consider in this paper estimate-then-optimize formulations based on either Nadaraya-Watson and
nearest-neighbors learning. In Section 2 we in fact indicate that both can be generalized using the balloon
estimator discussed by sain2002multivariate and stated in Definition 3. bertsimas2014predictive prove
that both the Nadaraya-Watson and nearest-neighbors formulations are asymptotically consistent under
mild assumptions on the training data and loss function. This is a clear advantage over the empirical-
risk-minimization formulation of rudin2014big which is biased whenever z?(·) 6∈ C. Unlike empirical-risk-
minimization formulations in which we can control the size of C, estimate-then-optimize formulations do not
have any natural defense mechanism against overfitting. It is indeed well known that unbiased estimators
based on Nadaraya-Watson and nearest neighbors learning typically suffer a large variance. Subsequent
minimization of the unbaised estimate EnDtr[n]

[L(z, y)|x = x0] only amplifies this issue and can results in

3



overly optimistic prescriptors as pointed out by michaud1989markowitz. The performance of estimate-
then-optimize formulations based on one particular training data set on out-of-sample data can consequently
be very poor.

Budget-Minimization: It is clear that when given only a limited amount of training data, data-driven
formulations must be guarded against such overcalibration to one specific training data set. Overfitting can
be discouraged by minimizing a budget function

ztr[n](x0) ∈ arg min
z
{cn(z,Dtr[n], x0) = EnDtr[n]

[L(z, y)|x = x0] + Jtr[n](z, x0)} (6)

consisting of both an asymptotically unbiased cost estimate and an additional non-negative regularization
term. Regularization has played a predominant role in statistics since at least the work of tikhonov1963solution
on ill-posed linear systems. While regularization has a detrimental effect on the predicted performance on
the training data as compared to its nominal counterpart (5), its role is to encourage decisions who perform
well on out-of-sample data too. We discuss in Section 3 how to regularize the Nadaraya-Watson formulation
of hannah2010nonparametric and the nearest-neighbors formulations of bertsimas2014predictive in
order to encourage out-of-sample performance while preserving computational tractability.

Out-of-Sample Performance Metrics?

We discuss here first the limitations of the most popular out-of-sample performance metrics found in the
literature. Out-of-sample performance metrics are typically defined in the context of the training data tr[n]
as one particular realization of the first n points of the random process

data := [d1 = (x1, y1) ∼iid D
?, d2 = (x2, y2) ∼iid D

?, . . . ] ∼ D?∞. (7)

Each data point is here taken as an independent sample from a common distribution which is completely
unknown to the decision maker. The distribution D?∞ of the data generation process hence consists of a
sequence of independent copies of the distributional model D?. Perhaps the most straightforward measure
of out-of-sample performance is captured by the difference

Rn(zdata[n], D
?, x0) := ED?∞

[
ED?

[
L(zdata[n](x0), y)|x = x0

]
−min

z
ED? [L(z, y)|x = x0]

]
between the cost of our decision based on training data and the best decision made with the benefit on hind-
sight averaged over the random training data[n]. The term Rn(zdata[n], D

?, x0) hence quantifies the expected
regret which will be experienced when committing to zdata[n] in comparison to an optimizer having access to
all information. Online optimization, see for instance hazan2016introduction, directly attempts to mini-
mize the asymptotic speed with which Rn(zdata[n], D

?, x0) goes to zero as the number of samples n increases.
As the distribution generating the data is unknown, we need a uniformly small regret in the generating
distribution D? to claim good out-of-sample performance in practice. However, this is not possible without
prior knowledge on the distribution D?. This negative result holds even if the covariate distribution X? is
finitely supported. Fix indeed a particular covariate context x = x̄0. Notice that the event E in which the
context x = x̄0 is not observed at all in the training data, i.e., E := {∀(x̄, ȳ) ∈ data[n] : x̄ 6= x̄0}, has always
a positive probability D?∞[E ] = (1 − D?[{x = x̄0}])n. The regret is hence at least Rn(zdata[n], D

?, x̄0) ≥
ED?∞

[
ED?

[
L(zdata[n](x0), y)|x = x̄0

]
− ED? [L(z?(x0), y)|x = x̄0] |E

]
(1 −D?[{x = x̄0}])n the regret experi-

enced in this particularly adverse event. As the loss function L is convex in the decision z we have by Jensen’s
inequality Rn(zdata[n], D

?, x̄0) ≥ (ED? [L(z̄, y)|x = x̄0]− ED? [L(z?(x̄0), y)|x = x̄0]) (1 − D?[{x = x̄0}])n for

the average decision z̄ := ED?∞
[
zdata[n](x̄0)|E

]
. Let us define an ambiguity set A = {D : D[B ∩ {x 6=

x̄0}] = D?[B ∩ {x 6= x̄0}] ∀B} as the set consisting of all distributions identical to the distributional model
D? with the exception of events in the context of interest x = x̄0. By construction we have then that
z̄ = ED∞

[
zdata[n](x̄0)|E

]
for all D in A as in the event E the prescriptor zdata(x̄0) is a function of data pre-

cisely outside the context of interest x = x0. We trivially have that the conditional distribution D(x = x̄0)
of distributions in A is left arbitrary, i.e., {D(x = x̄0) : D ∈ A} is the set of all distributions. Thus,

sup
D∈A

Rn(zdata[n], D, x̄0) ≥ max
Y

(
EY [L(z̄, y)]−min

z
EY [L(z, y)]

)
(1−D?[{x = x̄0}])n.
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The worst-case regret over D ⊇ A is hence nonzero unless the loss function is independent of the decision.
Given a finite number n of training data points, obtaining a small regret uniform in D? seems to be too
much to ask for. We can only get uniform small regret at the expense of demanding exotic conditions on
D?. We could for instance constrain D?[{x = x̄0}] to be bounded from below.

An alternative out-of-sample performance metric in the context of budget minimization formulations is the
disappointment of our decision zdata[n](x0) defined as the random difference between its actual cost and its
predicted budget

Dn(zdata[n], D
?, x0) = ED?

[
L(zdata[n](x0), y)|x = x0

]
− cn(zdata[n](x0), Ddata[n], x0).

By keeping the probability D?∞[{Dn(zdata[n], D
?, x0) > 0}

]
uniformly small in D?, we are guaranteed that

the cost of the decision we have committed to will not often break our predicted budget. Unfortunately
also this requirement is too demanding even if D? is finitely supported. Fix again a particular covariate
context x = x̄0. vanparys2017data prove in this context that in order to have a disappointment rate
limn→∞ 1

n logD?∞(Dn(zdata[n], D
?) > 0

)
≤ −r uniformly in D?, the projected cost or budget used to make

decisions needs to be for all z at least as large as

cn(z,Ddata[n], x̄0) ≥ max
{

EY [L(z, y)] : Y s.t. B(Ddata[n](x = x̄0), Y ) ≤ r/Ddata[n][x = x̄0]
}

where B is the relative entropy distance between distributions proposed first by kullback1951information.
When in particular the context of interest is not observed in the data set, i.e., the event E , we must resort
to a budget as the worst-case cost cn(z,Ddata[n], x̄0) = maxy L(z, y) which is clearly undesirable and may
not even be well defined if L is not bounded. Notice that this adverse event happens with probability
D?∞[E ] = (1−D?[{x = x̄0}])n. As was the case for regret, obtaining a small disappointment uniform in D?

seems to be too much to ask for. We can only get uniform small disappointment at the expense of demanding
exotic conditions on D?. Constraining D?[{x = x̄0}] to be bounded from below is again a possibility. As a
contribution we propose here to use a more practical notion of out-of-sample performance instead.

Contributions

A standard practice in machine learning to quantify the out-of-sample performance of a data-driven method
is instead to compare its training performance with its performance on validation data. If its performance
on validation data is comparable to its training performance, a data-driven method is then expected to
generalize well to out-of-sample test data as well. Let us now consider the budget minimization formu-
lation (6) with budget function cn(z,Dtr, x0) = EnDtr[n]

[L(z, y)|x = x0] + Jtr[n](z, x0) as our best attempt

to regularize the estimate-then-optimize formulation (5). Suppose we obtain access to further validation
sets vd[n] ∈ V each containing the same number as data points as the training data set. As the true
cost ED?

[
L(ztr[n](x0), y)|x = x0

]
of our decision can ultimately not be known, any practical measure of

out-of-sample disappointment must rather measure disappointment relative to a best unbiased estimate
EnDvd[n]

[
L(ztr[n](x0), y)|x = x0

]
instead. A practical measure of out-of-sample disappointment would hence

be the fraction

1

|V |
∑

vd[n]∈V 1{EnDvd[n]

[
L(ztr[n](x0), y)|x = x0

]
≥ cn(ztr[n](x0), Dtr[n], x0)} (8)

of all validation sets based on which the new estimated cost of the decision we have committed to breaks
the training budget. Instead of attempting to obtain a theoretical guaranteed out-of-sample performance,
which we argued is impossible, this validation metric provides a practical alternative. Notice however that
our validation metric critically really on our ability to obtain large quantities of validation data. However,
it is clear that obtaining large quantities of additional validation data in practice is not a viable approach.
We want to be able to quantify the statistical accuracy of the cost estimate cn(ztr[n](x0), Dtr[n], x0) of our
decision without access to independent validation data. In statistics this problem is commonly addressed
using resampling methods such as the statistical bootstrap of efron1982jackknife.
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Bootstrapping is the process of resampling with replacement a validation data set from the original training
data set. It can also be described formally as the stochastic process

bs := [(x1,r, y1,r) ∼iid Dtr[n],M2,r = (x2,r, y2,r) ∼iid Dtr[n], . . . ] ∼ D∞tr[n] (9)

of resampling n independent data points from the empirical distribution of the training data. The bootstrap
method can hence generate its own synthetic validation data sets bs[n] directly from the training data set.
Bootstrap data sets so obtained are synthetic as actual validation data vd[n] ought to be drawn from the same
data generation process as the training data defined in (7). Notice indeed that the bootstrap data and the
training data share the same exact data points modulo their frequency. That is, the empirical distributions
of the bootstrap data Dbs[n] is always supported on a subset of the training data points Ωn observed in the
training data set. In the context of budget minimization formulations, we can sample bootstrap data sets
bs ∈ B and use the fraction

1

|B|
∑

bs[n]∈B 1{EnDbs[n]

[
L(ztr[n](x0), y)|x = x0

]
≥ cn(ztr[n](x0), Dtr[n], x0)} (10)

as a proxy to the out-of-sample disappointment (8) on actual validation data. As bootstrapping can be done
at a low computational cost and does not require any validation data it is a practically viable approach to
quantify the out-of-sample performance of budget minimization formulations. In what follows we will in fact
consider the exact bootstrap out-of-sample disappointment which lets the number of bootstrap resamples
|B| tend to infinity and can formally be defined as

D∞tr[n][E
n
Dbs[n]

[
L(ztr[n](x0), y)|x = x0

]
≥ cn(ztr[n](x0), Dtr[n], x0)}] (11)

as our metric of out-of-sample performance. The main technical innovations presented in this work to enable
bootstrap robust prescriptions are discussed in the remainder of this section.

We present in this paper the first budget minimization formulations who suffer small bootstrap disap-
pointment by design. To do so we introduce our novel notion of the bootstrap robust counterpart of an
estimate-then-predict formulation.

Definition 1 (Bootstrap Robust Counterpart). The budget function cn and its associated prescriptor
ztr[n](x0) ∈ arg minz cn(z,Dtr, x0) are said to be the bootstrap robust counterpart with disappointment b ∈
[0, 1) of an estimate-then-optimize formulation with estimator EnDtr[n]

[
L(ztr[n](x0), y)|x = x0

]
if we have

D∞tr[n]

[
EnDbs[n]

[
L(ztr[n](x0), y)|x = x0

]
> cn(ztr[n](x0), Dtr[n], x0)

]
≤ b. (12)

Budget minimization formulations which are bootstrap robust counterparts do not possess any theoretical
out-of-sample performance as classically defined either through regret or disappointment. We have indeed
argued that no data-driven method can provide such guarantees without resorting to stringent claims on
how the data was generated. Instead, our robustness is defined directly through low disappointment on
bootstrap data serving as our best attempt as to make synthetic validation data and hence by proxy hopefully
on actual out-of-sample validation data as well. Notice however that the bootstrap out-of-sample metric
and counterpart as described before are entirely descriptive and do not suggest how to ensure a budget
minimization approach does in fact enjoy such performance on synthetic validation data.

We will make both the classical Nadaraya-Watson and nearest neighbors formulations bootstrap robust by
formulating their distributionally robust counterpart. In fact we will do so by treating either as a special
case of a more general balloon estimation formulation. We prove that the resulting budget minimization
formulations are computationally as tractable as their nominal counterparts. When for instance the estimate-
then-optimization formulation reduces to a tractable convex optimization problem then so will its robust
counterpart. The previous crucial observation makes our robust budget minimization formulations practically
viable. One particular distributionally robust counterpart based on the relative entropy distance is proven to
safeguard against bootstrap overfitting as stated in Definition 1. We derive practical finite sample bootstrap
performance guarantees as in (12) regarding the resulting robust supervised learning formulation. For this
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x̄0

1
n

Figure 1: The three and four nearest neighbors (in orange) of the context of interest x0. We depict the
neighborhood set N3

n(x0) as the orange circles in the support set Ωn. This neighborhood contains both
the three and four nearest neighbors around x0 as the most distant nearest neighbor was seen twice in the
training data. The orange circle visualizes the metric d implicit in the concept of nearest neighbors learning.

particular bootstrap robust counterpart we derive a more explicit tractable reformulation based on convex
duality.

Finally, we present the efficacy of our three proposed data-driven formulations on a small news vendor
problem as well as a small portfolio allocation problem. We published a Julia implementation of the ideas
and examples in this work at https://gitlab.com/vanparys/BootstrapRobustAnalytics.jl.

2 Estimate-Then-Optimize Prescriptions

The estimate-then-optimize formulations which we defined in (5) are distinct only in so far as they are based
on a different estimate EnDtr[n]

[L(z̄, y)|x = x0] of the actual cost of actions z̄ based on supervised training

data. A large variety of methods in machine learning can provides such estimates. We will focus here solely on
the Nadaraya-Watson formulation of hannah2010nonparametric and the nearest-neighbors formulation
introduced by bertsimas2014predictive. In fact, we will treat here both formulations simultaneously by
considering a generalization based on the balloon estimator discussed in sain2002multivariate. As the
balloon estimator is a local learning method it is based on the concept of neighborhoods depicted visually
in Figure 1.

Definition 2 (Distance & Neighborhood). Let us consider a function which assigns a positive distance
dist(d̄, x0) for all d̄ ∈ Ω. Assume the distance function enjoys the discrimination property dist(d̄, x̄) =
dist(d̄′, x̄) ⇐⇒ d̄ = d̄′ for all d̄, d̄′ in Ω. We divide the training data in increasingly larger nested sets

N j
n(x0) :=

{
d̄ ∈ tr[n] : dist(d̄, x0) ≤ Rjn

}
, with

Rjn := min
{
R ≥ 0 :

∣∣{d̄ ∈ tr[n] : dist(d̄, x0) ≤ R
}∣∣ ≥ j}

each containing those j distinct points in the training data closest to x0.

The particular distance dist(d̄, x0) should ideally reflect how relevant an observation d̄ is to our context of
interest x = x0. A common choice is to define the distance as a monotonically decreasing function of the
Euclidean distance ‖x̄− x0‖2 between the covariates. Notice that this distance function does not possess the
discrimination property. Indeed, when ‖x̄i − x0‖2 = ‖x̄j − x0‖ for i 6= j we have a tie. The lack of discrimi-
nation property translates in ambiguously defined neighborhood sets N j

n. The discrimination property may
be recovered by deterministically breaking ties based for instance on the value of ȳ. gyorfi2006distribution
propose a random alternative by augmenting the covariates with an independent auxiliary uniformly dis-
tributed random variable on [0, 1]. They prove that by doing so ties occur with probability zero. Hence,
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Name Smoother S

Uniform 1
21‖∆x‖≤1

Epanechnikov 3
4 (1− ‖∆x‖2)1‖∆x‖≤1

Tricubic 70
81 (1− ‖∆x‖3)31‖∆x‖≤1

Gaussian exp (−‖∆x‖2 /2)/
√

2π

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8
Uniform

Epanechnikov
Tri-Cubic
Gaussian

Figure 2: A comparison of popular common smoother functions S. The tricubic smoother has compact
support and has two continuous derivatives at the boundary of its support, while the Epanechnikov smoother
has none. The Gaussian smoother is continuously differentiable, but has infinite support.

with random tie breaking the neighborhood sets satisfy
∣∣N j

n(x0)
∣∣ = j for all j ∈ [n] with probability one. As

far as the theoretical results in this paper are concerned, we are quite flexible with regards to the particular
distance function considered. In fact, we do not even need the distance function to be a metric distance.
The discrimination property of the distance function allows us to order distinct data points on proximity to
the covariate context of interest x = x0 in a unique way.

Definition 3 (Balloon estimation formulation). The balloon estimation formulation minimizes the weighted
average

ztr[n](x0) ∈ arg min
z

EnDtr[n]
[L(z, y)|x = x0] :=

EDtr[n]

[
L(z, y) · wn(x, x0) · 1{(x, y) ∈ Nk

n(x0)}
]

EDtr[n]
[wn(x, x0) · 1{(x, y) ∈ Nk

n(x0)}] (13)

using a positive weighing function wn over the smallest data neighborhood around the context x = x0 con-
taining no less than k out of n observations.

A balloon estimator hence consider only data within the smallest neighborhood around its context of interest
x = x0 containing no less than k out of n observations and is completely blind to other data outside. Within
the neighborhood Nk

n(x0) each data point (x̄, ȳ) is weighted as wn(x̄, ȳ) ≥ 0 with the help of a weighing
function. It can easily be verified that the balloon estimator is insensitive to the order of the data points in
the training data set. Hence, the balloon estimator is indeed only a function the training data through its
empirical distribution and the total number of samples n.

2.1 Statistical Consistency

Our balloon estimation formulation has several hyper-parameters which have to be chosen with care; the
distance function, the number of neighbors, and the weighing function. The statistical properties of the
balloon estimator will depend on how these hyper-paramteres are chosen. We do not try to establish here
the statistical consistency of the balloon formulation in its greatest generality. Rather we briefly discuss the
statistical consistency of its two most common special cases.

The Nadaraya-Watson formulation of hannah2010nonparametric reduces to our balloon estimation for-
mulation for the particular choice k(n) = n. The Nadaraya Watson formulation minimizes indeed the
weighted average using a positive weighting function wn over all observations

ztr[n](x0) ∈ arg min
z

EnDtr[n]
[L(z, y)|x = x0] :=

EDtr[n]
[L(z, y) · wn(x, x0)]

EDtr[n]
[wn(x, x0)]

. (14)

Typically, the weighing function is taken to be wn(x̄, x0) = S(‖x̄− x0‖2 /h(n)) with the help of a positive
smoothing function S and bandwidth parameter h(n). Some common popular choices of smoothers are given
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in Figure 2. The Nadaraya-Watson formulation is particularly amenable to theoretical analysis due mostly
to its simplicity. Nadaraya-Watson estimation can indeed be shown to be point-wise consistent when using
an appropriately scaled bandwidth parameter h(n) for any of the smoother functions listed in Figure 2.

Theorem 1 (walk2010strong). Let us have a loss function satisfying ED? [|L(z̄, y)| ·max{log(|L(z̄, y)|), 0}] <
∞ for all z̄. Let the bandwidth h(n) = cn−δ for some c > 0 and δ ∈ (0, 1/dim(x)). Let S be any of the
smoother functions listed in Figure 2 and the weighing function is taken to be wn(x, x0) = S(‖x− x0‖2 /h(n)).
Then, the balloon estimation formulation (with k(n) = n) is asymptotically consistent for any D?, i.e., with
probability one we have

lim
n→∞

EnDdata[n]
[L(z̄, y)|x = x0] = ED? [L(z̄, y)|x = x0] ∀z̄.

Nearest neighbors learning is one of the most fundamental yet very simple learning methods and is dis-
cussed in virtually any textbook on machine learning. It is a common choice for learning when there is a
lot of data but little or no prior knowledge about the distribution of that data. Choosing a weighing func-
tion wn(x, x0) = 1 in our balloon estimation formulation yields precisely the nearest-neighbors formulation
discussed in bertsimas2014predictive. The nearest neighbors formulation indeed minimizes average

ztr[n](x0) ∈ arg min
z

EnDtr[n]
[L(z, y)|x = x0] :=

EDtr[n]

[
L(z, y) · 1{(x, y) ∈ Nk

n(x0)}
]

EDtr[n]
[1{(x, y) ∈ Nk

n(x0)}] (15)

restricted to the smallest data neighborhood around the context x = x0 containing no less than k obser-
vations. Nearest neighbors estimation is consistent under very mild technical conditions provided that the
number of neighbors is scaled appropriately with the number of training data samples.

Theorem 2 (walk2010strong). Assume dist(d̄ = (x̄, ȳ), x0) = ‖x̄− x0‖2 and follow the random tie break-
ing rule discussed in gyorfi2006distribution. Let k(n) = dmin{cnδ, n}e for some c > 0 and δ ∈ (0, 1).
Then, the balloon estimation formulation (with wn(x̄, x0) = 1) is asymptotically consistent for any D?, i.e.,
with probability one we have

lim
n→∞

EnDdata[n]
[L(z̄, y)|x = x0] = ED? [L(z̄, y)|x = x0] ∀z̄.

Theorems 1 and 2 merely establish the point-wise consistency of the balloon estimate of the cost for a fixed de-
cision z̄ in two particular cases related to Nadaraya-Watson (k(n) = n) and nearest neighbors (wn(x̄, x0) = 1)
learning. Point-wise consistency of cost estimates crucially does not establish consistency of the associated
budget minimization formulations, i.e., limn→∞ ED?

[
L(zdata[n], y)|x = x0

]
= minz ED? [L(z, y)|x = x0]. For

the latter uniform convergence of the cost estimates needs to be shown. bertsimas2014predictive do so un-
der rather mild technical assumptions. Indeed, it suffices to assume that the family of loss functions {L(·, ȳ)}ȳ
is equicontinuous. This equicontinuity assumption is rather mild as any family of functions with common
Lipschitz constant is equicontinuous. Lemma 4 of bertsimas2014predictive establishes that if the cost esti-
mate converges, it does so uniformly in the decision z̄, i.e., |EnDdata[n]

[L(z̄, y)|x = x0]−ED? [L(z̄, y)|x = x0] | ≤
ε(n) with probability one and limn→∞ ε(n) = 0 for all z̄ in a compact feasible decision set dom(EY ? [L(z, y)]).
It is not hard to see that the previous uniform bound in turn implies the consistency of the budget mini-
mization formulation. Indeed, with probability one we have

minz ED? [L(z, y)|x = x0] + ε(n)≥ EnDdata[n]
[L(z?(x0), y)|x = x0]

EnDdata[n]
[L(z?(x0), y)|x = x0]≥ EnDdata[n]

[
L(zdata[n], y)|x = x0

]
EnDdata[n]

[
L(zdata[n], y)|x = x0

]
≥ ED?

[
L(zdata[n], y)|x = x0

]
− ε(n)

=⇒ 0 ≤ ED?

[
L(zdata[n], y)|x = x0

]
−minz ED? [L(z, y)|x = x0] ≤ 2ε(n).

Here the optimality gap between the cost of the full information decision z?(x0) and the cost of the data-
driven decision zdata[n] is bounded by ε(n) which in turn converges to zero. It is noteworthy to remark that
consistency of the balloon estimation formulation is a property which holds uniformly for all distributions
D? which may have generated our data. As we argued in the introduction consistency does not mean good
out-of-sample performance when only a finite amount of training data is available.
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2.2 Bootstrapping Balloon Estimation

In this section, we show that carrying out balloon estimation on bootstrap data can be posed as a convex
optimization problem. The significance of the following result will become clear in Section 3. Recall that
any bootstrap data set bs[n] counts the same number of observations and shares its observations with the
training data set tr[n] from which it is resampled. In terms of its empirical distribution Dbs[n] this translates
to

Dbs[n] ∈ Dn,n :=
{
D :

∑
(x̄,ȳ)∈Ωn

D[x̄, ȳ] = 1, n ·D[x̄, ȳ] ∈ {0, 1, 2, . . . , n} ∀(x̄, ȳ) ∈ Ωn

}
⊂ Dn.

We would like to characterize our balloon estimator EnD [L(z̄, y)|x = x0] as an explicit function of such
empirical bootstrap distributions D ∈ Dn,n. That is, an explicit function predicting the cost of decisions z̄
in the context x = x0 based on bootstrap data. We can do so by first associating a partial predictor to each
of the j ∈ [n] neighborhoods sets N j

n(x0) with the help of a linear optimization problem

En,jD [L(z̄, y)|x = x̄] := sup
s>0,P

∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) · L(z̄, ȳ) · P [x̄, ȳ]

s.t. P [x̄, ȳ] ≥ 0, s ·D[x̄, ȳ] = P [x̄, ȳ] ∀(x̄, ȳ) ∈ Ωn∑
(x̄,ȳ)∈Ωn

P [x̄, ȳ] = s,
∑

(x̄,ȳ)∈Nj
n(x0) wn(x̄, x0) · P [x̄, ȳ] = 1,∑

(x̄,ȳ)∈Nj
n(x0) P [x̄, ȳ] ≥ k

n · s,
∑
Nj−1

n (x0) P [x̄, ȳ] ≤ k−1
n · s.

(16)

Here an optimization variable P [x̄, ȳ] for each distinct observed data point (x̄, ȳ) in the training data tr[n]
is introduced together with an additional variable s. Note that the domain of the partial estimators as a
function of the distribution D satisfies

dom En,jD [L(z, y)|x = x̄]

⊆ Djn :=
{
D ∈ Dn :

∑
Nj−1

n (x0)D[x̄, ȳ] ≤ (k − 1)/n < k/n ≤∑(x̄,ȳ)∈Nj
n(x0)D[x̄, ȳ]

}
.

(17)

For a distribution D to be in the domain of the partial estimator the constraints in the optimization formu-
lation given in equation (16) must indeed be feasible. In other words, there must exists some P and s > 0
for which s ·D[x̄, ȳ] = P [x̄, ȳ] for all (x̄, ȳ) ∈ Ωn. The last two constraints in equation (16) then imply that
any such D ∈ Dn must also be in Djn. We follow here the standard convention that the supremum over an
empty set to be unbounded from below. The balloon estimator can be decomposed using this convention as
the maximum of each of the partial estimators previously defined. We refer for the proof of the following
result to Appendix A.1.

Theorem 3 (An Equivalent Optimization Characterization). We have that the balloon estimator can be
decomposed as

EnD [L(z, y)|x = x0] =


En,1D [L(z, y)|x = x0] if D ∈ D1

n,
...

...
En,nD [L(z, y)|x = x0] if D ∈ Dn

n,

= maxj∈[n] En,jD [L(z, y)|x = x0]

for all empirical distributions D ∈ Dn,n constructed from n samples contained in the training data set.

3 Distributionally Robust Prescriptions

When working with data instead of models, one should safeguard against making decisions which dis-
play promising training performance, but lead to out-of-sample disappointment. The nominal supervised
learning formulations discussed before are indeed gullible and tend to be over-calibrated to one particu-
lar data set. It is clear that when given only a limited amount of training data, any data-driven method
must be guarded against such overfitting phenomena. Distributionally robust optimization has attracted
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Type Model distance function R(D,D′) =

Total Variation
∑

(x̄,ȳ)∈Ωn
|D[x̄, ȳ]−D′[x̄, ȳ]|

Pearson
∑

(x̄,ȳ)∈Ωn
(D[x̄, ȳ]−D′[x̄, ȳ])2/D′[x̄, ȳ]

Entropy
∑

(x̄,ȳ)∈Ωn
log (D[x̄, ȳ]/D′[x̄, ȳ])D[x̄, ȳ]

Burg Entropy
∑

(x̄,ȳ)∈Ωn
log (D′[x̄, ȳ]/D[x̄, ȳ])D′[x̄, ȳ]

f -Divergence
∑

(x̄,ȳ)∈Ωn
f (D[x̄, ȳ]/D′[x̄, ȳ])D′[x̄, ȳ]

Table 1: Model distance functions based on popular probability divergence metrices. The f -divergences give
rise to a model distance function for convex functions f with f(1) = 0. The Pearson and Burg entropy are
particular cases for f(t) = t2 − 1 and f(t) = − log(t), respectively. postek2016computationally provide
and discus many more probability divergences in great detail.

significant attention as it provides the sample average formulation with a disciplined safeguard mecha-
nism against overfitting. By using a robust counterpart with respect to an ambiguity set of distributions
around an estimated nominal one, they were shown by vanparys2017data to be minimally biased while
still enjoying statistical out-of-sample guarantees. Many interesting choices of the ambiguity set further-
more result in a tractable overall decision-making approach. The ambiguity set can be defined, for exam-
ple, through confidence intervals for the distribution’s moments as done by delage2010distributionally;
vanparys2016generalized; vanparys2015distributionally; stellato2016multivariate. Alternatively,
wang2009likelihood use an ambiguity set that contains all distributions that achieve a prescribed level
of likelihood, while bertsimas2014robust based theirs on models which pass a statistical hypothesis
test. Distance-based ambiguity sets contain all models sufficiently close to a reference with respect to
probability metrics such as the Prokhorov metric (erdogan2006), the Wasserstein distance (pflug2007;
esfahani2015data), or the total variation distance (sun2016).

As a major contribution in this paper we generalize distributionally robust optimization to estimate-then-
optimize formulations. We construct generic robust balloon estimation formulations with the help of a
model distance function. The resulting robust balloon estimation formulations should suffer only a limited
out-of-sample disappointment (12) on the bootstrap data bs[n] generated as defined in (9). Generic robust
estimate-then-optimize formulations are not necessarily robust in the sense put forward in Definition 1. In
the next section we will show that such bootstrap robustness guarantees can be obtained by considering a
very particular bootstrap distance function. However, we will concern ourselves in this section only with
showing the practical viability of generic robust estimate-then-optimize formulations with respect to any
model distance function in terms of computational tractability.

Definition 4 (Model Distance Function). A model distance function R is a function quantifying the distance
between two empirical distributions supported on Ωn enjoying the following property:

(i) Discrimination: R(D,D′) ≥ 0 for all D and D′, while R(D′, D) = 0 if and only if D′ = D.

(ii) Convexity: R(D,D′) is a convex function of D in D for all fixed D′.

We define first a generic robust counterpart to our nominal balloon estimation formulation with respect to
the ambiguity set

{
D : R(D,Dtr[n]) ≤ r

}
consisting of all empirical models at distance not exceeding r.

Definition 5 (Distributionally Robust Budget Formulations). The distributionally robust counterpart to an
estimate-then-optimize formulation with respect to the model distance function D is defined as

zr
tr[n](x0) ∈ arg minz cn(z,Dtr[n], x0) := supD EnD [L(z, Y )|x = x0]

s.t. D ∈ Dn,
R(D,Dtr[n]) ≤ r.

(18)
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Due to the discrimination property of the model distance function, the nominal supervised learning formu-
lation is recovered when the robustness radius tends towards zero. In that case we are indeed merely robust
with respect to the singleton

{
D : R(D,Dtr[n]) ≤ 0

}
= {Dtr[n]}. Using a robust counterpart instead of

nominal supervised learning formulations will help us protect against making prescriptions which do well
on the training data set but tend to disappoint on unseen data. The robust training prescription zr

tr[n](x0)
indeed does well not on one particular empirical training distribution Dtr[n] but rather on all distributions{
D : R(D,Dtr[n]) ≤ r

}
at distance less than r simultaneously. The particular distance function D dictates

which distributions are close to the nominal training model and consequently should be chosen with care.
Several popular choices are listed in Table 1. In the next section, we will single out one particularly relevant
model distance function in the context of the bootstrap disappointment defined in (12).

In Section 2, we have divided the training data into the nested neighborhoods N j
n(x0). Each of these

neighborhoods sets contains those data points closest to the context of interest x = x0. We associated
with each of these neighborhoods partial estimators. Theorem 3 shows how the balloon estimator can be
decomposed as the maximum of these n partial estimators Here, we likewise first introduce partial robust
budget function through the optimization problem

cjn(z,D, x0) := sup
s>0,P

∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) · L(z, ȳ) · P [x̄, ȳ]

s.t. s ·R(P/s,D) ≤ s · r,∑
(x̄,ȳ)∈Ωn

P [x̄, ȳ] = s,
∑

(x̄,ȳ)∈Nj
n(x0) wn(x̄, x0) · P [x̄, ȳ] = 1,∑

(x̄,ȳ)∈Nj
n(x0) P [x̄, ȳ] ≥ s · k/n, ∑(x̄,ȳ)∈Nj−1

n (x0) P [x̄, ȳ] ≤ s · (k − 1)/n.

(19)

The previous maximization problem characterizing the robust balloon estimators is concave. Its first opti-
mization variable s is merely one dimensional, while an additional optimization variable P (x̄, ȳ) is added
for each distinct training data point in the support Ωn. Its ultimate constraint is the only nonlinear one
and is convex as the perspective function s · R(P/s,D) is convex jointly in both variables whenever the
model distance function R is convex. Remark again that the smoother weights wn(x̄, x0) are assumed to be
non-negative. As a result, the robust estimator cjn(z,D, x0) is a convex function of the decision z.

Theorem 4 (Robust Balloon Estimation Formulation). The robust balloon estimation formulation can be
reformulated as the convex optimization problem

zr
tr[n](x0) ∈ arg min

z
cn(z,Dtr[n], x0) := max

j∈[n]
cjn(z,Dtr[n], x0). (20)

Proof. The chain of equalities{
(s, P ) : ∃D s.t. s ·D = P, R(D,Dtr[n]) ≤ r

}
=
{

(s, P ) : R(P/s,Dtr[n]) ≤ r
}

=
{

(s, P ) : s ·R(P/s,Dtr[n]) ≤ s · r
}

imply that the robust partial budget function cjn(z,Dtr[n], x0) correspond exactly to the robust version

sup {En,jD [L(z, y)|x = x0] : R(D,Dtr[n]) ≤ r} of the partial balloon estimators. We have from Theorem 3 the
composition cn(z,Dtr[n], x0) := maxj∈[n] c

j
n(z,Dtr[n], x0). The final optimization formulation is convex as it

consists of minimizing the maximum of the individually convex partial budget functions cjn(z,Dtr[n], x0).

The previous theorem establishes the computational tractability of robust balloon formulations and in par-
ticular entails both robust Nadaraya-Watson and nearest neighbors formulations. We indicate that in case
of the former a less involved formulation can be obtained. We refer for its proof to Appendix A.2.

Corollary 1. The robust balloon estimation formulation (k(n) = n) can be reformulated as the convex
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optimization problem zr
tr[n](x0) ∈ arg minz cn(z,Dtr[n], x0) with

cn(z,Dtr[n], x0) := sup
D

∑
(x̄,ȳ)∈Ωn

wn(x̄, x̄0) · L(z, ȳ) ·D[x̄, ȳ]/
∑

(x̄,ȳ)∈Ωn
wn(x̄, x̄0) ·D[x̄, ȳ]

s.t. R(D,Dtr[n]) ≤ r

= sup
s>0,P

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) · L(z, ȳ) · P [x̄, ȳ]

s.t. s ·R(P/s,Dtr[n]) ≤ s · r,∑
(x̄,ȳ)∈Ωn

P [x̄, ȳ] = s,
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) · P [x̄, ȳ] = 1.

Robust Nadaraya-Watson formulation have been proposed before, most notably by hanasusanto2013robust
in the context of robust dynamic programming. We briefly take here the opportunity to point out that our
robust Nadaraya-Watson formulation is fundamentally different. The robust Nadaraya-Watson formulations
found in hanasusanto2013robust correspond directly to the more restricted alternative

c′n(z,Dtr[n], x0) := sup
D

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) · L(z, ȳ) ·D[x̄, ȳ]/
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) ·D[x̄, ȳ]

s.t. R(D,Dtr[n]) ≤ r,∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) ·D[x̄, ȳ] =
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) ·Dtr[n][x̄, ȳ].

In hanasusanto2013robust one particular convex model distance function R based on a scaled version
of the Pearson distance mentioned in Table 1 is singled out. In terms of the convex reformulation given in
Corollary 1, this alternative can be easily seen to correspond to simply restricting the optimization variable
s > 0 to take fixed value s = 1/

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) ·Dtr[n][x̄, ȳ]. Even in the particular context of the
Nadaraya-Watson formulation, our notion of distributional robustness hence seems to be novel.

In this section, we were merely interested in the practical viability of the generic robust supervised learning
formulations stated in Definition 5. We argued that for arbitrary convex model distance functions this is
indeed the case. Most convex model distance functions do not necessarily guarantee that the corresponding
generic robust supervised learning formulations perform well on the out-of-sample bootstrap data. In the
next section, we single out one particular distance function for which this is not the case. Correspondingly,
we will come to denote this special model distance function as the bootstrap distance function.

4 Bootstrap Robust Prescriptions

In the previous section, we indicated that a robust balloon estimation formulation with respect to any
arbitrary model distance function is not necessarily bootstrap robust in the sense of Definition 1. In the
remainder of this section we will indicate that for the following particular model distance function this
is however not the case. We also provide an even more practical representation of the particular budget
minimization formulations based on convex duality specific to this particular bootstrap distance function.

Definition 6 (The Bootstrap Distance Function). For two empirical models D and D′ in Dn we define their
bootstrap distance as

B(D,D′) :=
∑

(x̄,ȳ)∈Ωn
D[x̄, ȳ] · log

(
D [x̄,ȳ]
D′[x̄,ȳ]

)
. (21)

The bootstrap distance between two empirical models is recognized as the relative entropy distance for dis-
crete distributions as stated in Table 1. The relative entropy is also known as information for discrimination,
cross-entropy, information gain or Kullback-Leibler divergence (kullback1951information). We first prove
that in fact the resulting particular robust balloon estimation formulation is in fact statistically consistent
under mild conditions.
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4.1 Statistical consistency

The bootstrap robust Nadaraya-Watson estimation is consistent for bounded loss functions when the ro-
bustness radius r(n) is appropriately scaled with respect to the bandwidth parameter h(n). To establish
consistency of the associated bootstrap robust balloon estimation, it is noteworthy to know that the total
variation distance is related to the bootstrap distance as

‖D −D′‖1 := maxE⊆Ωn
|D[E ]−D′[E ]|

=
∑

(x̄,ȳ)∈Ωn
|D[x̄, ȳ]−D′[x̄, ȳ]|

≤
√

1/2B(D,D′)

which better known as to Pinkser’s inequality.

Theorem 5 (Bootstrap Robust Nadaraya-Watson Esitmation). Assume a bounded loss function L(z̄, ȳ) <
L̄ <∞ for all feasible decisions z̄ and parameters ȳ. Let h(n) = cn−δ for some c > 0 and δ ∈ (0, 1/dim(x)).
Let S be any of the smoother functions listed in Figure 2 and the weighing function is taken to be wn(x̄, x0) =
S(‖x̄− x0‖2 /h(n)). Let the robustness radius satisfy limn→∞

√
r(n)/h(n)dim(x) = 0 for model distance

function R = B. Then, bootstrap robust balloon estimation (with k(n) = n) is asymptotically consistent for
any D?, i.e., with probability one

lim
n→∞

ED?

[
L(zrdata[n], y)|x = x0

]
= min

z
ED? [L(z, y)|x = x0] .

We refer to the proof of the previous result based on Pinsker’s inequality to Appendix A.3. A similar result
holds for bootstrap robust nearest neighbors estimation. Here the robustness radius r(n) needs to be scaled
appropriately as a function of the number of nearest neighbors k(n). Again the proof is technically based
on Pinsker’s inequality and referred to Appendix A.4.

Theorem 6 (Bootstrap Robust nearest neighbors Estimation). Assume a bounded loss function L(z, ȳ) <
L̄ < ∞ for all feasible decisions z̄ and parameters ȳ. Let dist(d̄ = (x̄, ȳ), x0) = ‖x̄− x0‖2 and follow the
tie breaking rule discussed in gyorfi2006distribution. Let k(n) = dmin{cnδ, n}e for some c > 0 and
δ ∈ (0, 1). Let the robustness radius satisfy limn→∞ n

√
r(n)/k(n) = 0 for model distance function R = B.

Then, bootstrap robust balloon estimation (wn(x̄, x0) = 1) is asymptotically consistent for any D?, i.e., with
probability one

lim
n→∞

ED?

[
L(zrdata[n], y)|x = x0

]
= min

z
ED? [L(z, y)|x = x0] .

4.2 Bootstrap Performance

We will now see that a particular robustness radius is advisable if a constant bootstrap performance is
required. To establish that besides consistency, the bootstrap robust balloon estimation formulation suffers
only a limited bootstrap disappointment, we will need one elementary result from large deviation theory.
The following theorem characterizes the essential large deviation behavior of the empirical distribution Dbs[n]

of the bootstrap data resampled from the training data as outlined in (9). This result forms the backbone
of most of the theoretical results in this paper concerning the out-of-sample properties of our robust balloon
estimation formulation.

Theorem 7 (The Bootstrap Inequality (csiszar1984sanov)). The probability that the random bootstrap
distribution Dbs[n] realizes in a convex set of models C satisfies the finite sample inequality

D∞tr[n]

[
Dbs[n] ∈ C

]
≤ exp

(
−n · infD∈C B(D,Dtr[n])

)
, ∀n ≥ 1. (22)

The geometry of the bootstrap inequality is visualized in Figure 3. The bootstrap inequality is of high-quality
and is asymptotically exact in the exponential case. Large deviation theory provides the corresponding lower
bound

− inf
D∈int C

B(D,Dtr[n]) ≤ lim inf
n→∞

1

n
logD∞tr[n]

[
Dbs[n] ∈ C

]
, (23)
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Figure 3: Visualization of the bootstrap inequality (22) in Theorem 7. The probability D∞tr[n](Dbs[n] ∈ C)
decays at the exponential rate r := infD∈C B

(
D,Dtr[n]

)
, which can be viewed as the bootstrap distance of

the empirical training model Dtr[n] to the set of interest C.

which meets the upper bound (22) asymptotically in the exponential case for regular event sets C = cl int C as
the bootstrap distance function is continuous in its first argument when its second argumentDtr[n][x̄, ȳ] ≥ 1/n
happens to be positive for any (x̄, ȳ) ∈ Ωn. For further discussion on large deviation theory we refer the
reader to the work of csiszar1984sanov.

Notice that for the optimization problem defining the partial estimators cjn to be nontrivial for the training
model Dtr[n], the robustness radius r needs to be bigger than the minimum robustness radius

rjn := inf R(D,Dtr[n])

s.t. D ∈ Djn
(24)

where Djn was defined in (17). If this is the case, then the feasible set of the optimization problem (19) defining
the partial cost cjn is indeed non-empty. Also these extremal bootstrap radii are characterized as the solution
of a tractable convex optimization problem. These bootstrap radii will come to play an important role in
the characterization of the bootstrap disappointment suffered by our robust balloon estimator formulation.

Theorem 8 (Performance of the Bootstrap Robust Balloon Estimation Formulation). The robust balloon
estimation formulation with bootstrap distance function (R = B) and robustness radius r suffers a bootstrap
disappointment defined in (12) at most

b =
∑
j∈[n] exp (−n ·max{r, rjn}).

Proof. Let us fix a training data set with empirical distribution Dtr[n] and consider a given decision z̄.

Let c̄jn := En,jDtr[n]
[L(z̄, y)|x = x0] with c̄n = maxj∈[n] c̄

j
n be the budgeted cost based on the training data.

In order to prove the theorem, it suffices to characterize the probability of the event that the empirical
distribution Dbs[n] of random bootstrap data resampled from the training data realizes in the set C =
{D ∈ Dn : cn(z̄, D, x0) > c̄n} = ∪j∈[n] Cj with

Cj :=
{
D ∈ Djn : En,jD [L(z̄, y)|x = x0] > c̄n

}
= {D ∈ Djn :

∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) · L(z̄, y) ·D[x̄, ȳ] > c̄n ·
∑

(x̄,ȳ)∈Nj
n(x0) wn(x̄, x0) ·D[x̄, ȳ]}.

Each of the partial sets Cj is a convex polyhedron. We can use the union bound to establish

D∞tr[n](Dbs[n] ∈ C) ≤
∑
j∈[n]D

n
tr[n](Dbs[n] ∈ Cj).
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The robust budget cost c̄n is constructed precisely as to ensure that infD∈Cj R(D,Dtr[n]) > r. Indeed, we

have the implication D̄ ∈ Cj =⇒ En,j
D̄

[L(z̄, y)|x = x0] > c̄n ≥ sup {En,jD [L(z̄, y)|x = x0] |R(D,Dtr[n]) ≤
r, D ∈ Dn} which in turn itself implies R(D̄,Dtr[n]) > r. By virtue of the inclusion Cj ⊆ Djn, evidently, we
must also have that infD∈Cj R(D,Dtr[n]) > rjn := inf{R(D,Dtr[n]) : D ∈ Djn}. Hence, the result follows from
the bootstrap inequality (22) applied to each of the probabilities D∞tr[n](Dbs[n] ∈ Cj) as in this particular case

the employed model distance function (R = B) coincides with the bootstrap distance function.

The previous theorem gives an explicit characterization of the bootstrap performance of the general balloon
estimation formulation. Choosing the robustness radius r(n) yielding a desired bootstrap disappointment b
can not be done analytically, but thanks to the convex characterization (24) of the minimum bootstrap radii
rjn it can nevertheless be carried out numerically in a tractable fashion. It is also trivial to see that adding
robustness to the extend r(n) ≥ (log(n) + log(1/b))/n suffices to have bootstrap disappointment at most b.
When we scale the robustness radius in such a way that

lim
n→∞

r(n) · n
log(n)

=∞

then the disappointment on bootstrap data asymptotically converges to zero when the number of training
data points n tends to infinity. To be asymptotically consistent the robust nearest neighbors formulation
needs to satisfy limn→∞ n

√
r(n)/k(n) = 0 as pointed out in Theorem 6. Asymptotically vanishing disap-

pointment on bootstrap data can be combined with consistency by taking a number of nearest neighbors
k(n) = dmin{cnδ, n}e for some c > 0 and δ ∈ (0, 1) while at the same time scaling the robustness radius as
r(n) = tnγ with −1 < γ < 2(δ− 1) for any t > 0. For the Nadaraya-Watson formulation a slightly improved
result can in fact be stated. We omit the proof and refer to Appendix A.5.

Corollary 2 (Bootstrap Performance of the Nadaraya-Watson Formulation). The robust balloon estimation
formulation (with k(n) = n) with bootstrap distance function (D = B) suffers bootstrap disappointment as
defined in (12) at most

b = exp (−n · r).

Adding robustness to the extend r(n) ≥ log(1/b)/n already suffices here to have bootstrap disappointment
at most b. When we scale the robustness radius in such a way now that limn→∞ r(n) · n = ∞ then the
disappointment on bootstrap data asymptotically converges to zero when the number of training data points
n tends to infinity. To be asymptotically consistent the robust Nadaraya-Watson formulation needs to satisfy
limn→∞

√
r(n)/h(n)dim(x) = 0 as pointed out in Theorem 5. Asympotically vanishing disappointment on

bootstrap data can be combined with consistency by scaling the bandwidth parameter h(n) = cnδ for some
c > 0 and δ ∈ (0, 1/dim(x)) while at the same time scaling the robustness radius as r(n) = tnγ with
−1 < γ < 2δ · dim(x) for any t > 0.

4.3 Dual Perspective

Despite all previous encouraging results regarding the bootstrap performance and consistency of the robust
balloon estimation formulation, it is still stated as the solution to a saddle point problem in (20) which may be
awkward to handle practically. Both the size and the number of the maximization problems constituting the
bootstrap robust nearest neighbors formulation grows linearly with the amount of training data samples. The
following lemma tries to alleviate one of these concerns by considering a dual formulation of the maximization
problem characterizing the partial robust cost functions. We refer its proof to Appendix A.6.

Lemma 1 (Dual Representation balloon estimation). The partial bootstrap robust budget cjn(z̄, D, x0) can
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be represented using a dual convex optimization problem as

inf α

s.t. α ∈ R, η ∈ R2
+, ν ∈ R+,

ν log
(∑

(x̄,ȳ)∈Nj−1
n (x0) exp([(L(z̄, y)− α) · wn(x̄, x0) + η1 − η2]/ν) ·D[x̄, ȳ]

+
∑

(x̄,ȳ)∈Nj
n(x0)\Nj−1

n (x0) exp([(L(z̄, y)− α) · wn(x̄, x0) + η1]/ν) ·D[x̄, ȳ]

+
∑

Ωn\Nj
n(x0)D[x̄, ȳ]

)
+ r · ν − k

n (η1 − η2)− η2
n ≤ 0.

(25)

when the robustness radius satisfies r > rjn for all D ∈ Dn.

The main advantage of using the previous convex dual formulation of the robust nearest neighbors formulation
is that finding the optimal prescription zrtr[n](x0) now merely requires the solution of a convex optimization
problem over the decision z and three additional dual variables α, β, and η, instead of a saddle point problem
with variables of a dimension which may scale linearly in the amount of training data. This dependence on
the amount of training data is again not completely eliminated as the constraint in the dual characterization
(25) of the partial robust budget cjn still counts j terms. As the robust nearest neighbors cost function cn
consists of the maximum of all of these partial robust cost functions we still have to account for a total
number of O(n2) such terms. Only in the special case of Nadaraya-Watson estimation can the quadratic
size in terms of the number of optimization variables in n be avoided. We refer to the proof of next result
to Appendix A.7.

Lemma 2 (Dual Representation Nadaraya-Watson estimation). The partial bootstrap robust cost cjn(z̄, D, x0)
can be represented using a dual convex optimization problem as

inf α

s.t. α ∈ R, ν ∈ R+,

ν · log
(∑

(x̄,ȳ)∈Ωn
exp ((L(z̄, y)− α) · wn(x̄, x0)/ν) ·D[x̄, ȳ]

)
+ r · ν ≤ 0.

(26)

for all D ∈ Dn.

5 Numerical Examples

We discuss a data-driven news vendor problem in Section 5.1 and a data-driven portfolio allocation problem in
Section 5.2. Both of these problems are prescriptive analytics problems stated generally in (2) for a particular
loss function L. For both problems, we consider the nominal and bootstrap robust supervised learning
formulations discussed in this paper. We briefly discuss first how our supervised learning formulations
were solved and trained in practice. All algorithms were implemented in Julia discussed developed by
bezanson2017julia.

The nominal Nadaraya-Watson and nearest neighbors formulations of bertsimas2014predictive were im-
plemented with the help of the Convex package developed by udell2014convex. Taking advantage of the
dual representations given in Lemmas 2 and 1, the same procedure was followed for their robust counterparts
with respect to the bootstrap distance function as well. The corresponding exponential cone optimization
problems were solved numerically with the ECOS interior point solver by domahidi2013ECOS.

Both the Nadaraya-Watson and nearest neighbors formulations require several hyper parameters such as the
smoother function S or the number of neighbors to be learned from data. We considered a Nadaraya-Watson
formulation using the Gaussian smoother function given in Figure 2. Likewise, we considered the classical
nearest neighbors formulation with the Mahalanobis distance metric d(m = (x, y), x̄) = (x− x̄)>Σ−1

tr[n](x− x̄)

based on the empirical variance Σtr[n] :=
∑

(x̄,ȳ)∈tr[n](x̄−µtr[n])·(x̄−µtr[n])
>/n and the empirical mean of the

auxiliary data µtr[n] :=
∑

(x̄,ȳ)∈tr[n] x/n. Potential ties among equidistant points were broken based on the

method discussed by gyorfi2006distribution. The bandwidth parameter h(n) and the number of nearest
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(a) Nadaraya-Watson Formulations
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(b) Nearest Neighbors Formulations

Figure 4: The empirical bootstrap disappointment b of the Nadaraya-Watson and nearest neighbors for-
mulations in function of the number of samples n. The nominal Nadaraya-Watson and nearest neighbors
formulation corresponds to the case r = 0. Such nominal formulations do not safeguard against over-
calibration as they disappoint on random bootstrap data about half (b ≈ 1

2 ) the time. The dotted lines
visualize the upper bounds concerning the bootstrap disappointment of the bootstrap robust Nadaraya-
Watson and nearest neighbors formulation given in Theorem 2 and Theorem 8, respectively. Large deviation
theory (csiszar1984sanov) indicates that these bootstrap upper bounds and the actual bootstrap disap-
pointments of either formulation drop to zero at the same exponential rate r.

neighbors k(n) were determined based on the squared prediction loss performance of the corresponding
Nadaraya-Watson or nearest neighbors predictive learner on ten data sets cross validated from the training
data.

5.1 A News Vendor Problem

A company sells a perishable good and needs to make an order z ∈ R. Ideally, the company would of course
like to order exactly z = y where y is the demand of the perishable good. Unfortunately, a decision on the
order quantity needs to be made before the demand is observed. Fortunately, however, the company can
observe before making the order several covariates x = x0 which may correlate with the uncertain demand.
The company may consider the day of the week w ∈ {Monday, . . . ,Sunday} to capture weekly cyclical
demand, and the outside temperature t ∈ R which can influence demand as well. Here, only two covariates
are considered where in practice many more covariates may be taken into consideration. For repeated sales,
a sensible goal is to order a quantity that minimizes the total expected cost according to

z?(x0) ∈ arg inf ED?

[
L(z, y) := b · (y − z)+ + h · (z − y)+

∣∣x = x0

]
.

The constants b = 10 ∈ R+ and h = 1 ∈ R+ represent here the marginal cost in dollars of back ordering and
holding goods, respectively. If the model distribution D? is known, then a classical result states that the
optimal decision is then given by the quantile z?(x0) := inf

{
z : ED?

[
1{y ≤ z}

∣∣x = x0

]
≥ b/(b+ h)

}
of the

demand distribution in the covariate context of interest. The classical news vendor formulation assumes the
joint distribution D? between returns and covariates to be known. In practice however this is almost never
the case.

A supervised data version of this news vendor problem is discussed by rudin2014big. We consider synthetic
training data drawn as independent samples from the synthetic model D? with a Gaussian conditional
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distribution
D?(x0 = (t̄, w̄)) = N(100 + (t̄− 20) + 20 · I(w̄ ∈ {Weekend}), 16)

and where the day of the week and outside temperature are independent random variables distributed
uniformly and normally as N(20, 4), respectively. In our synthetic example, the oracle solution z?(x0) is
not linear in x0 and hence, as discussed in the introduction, the empirical-risk-minimization formulation
developed in rudin2014big will be biased and hence not directly applicable. We ignored here for the sake
of simplicity that the demand typically is not observed directly but needs to be estimated from censored
data as discussed for instance in ferreira2015analytics. Also for simplicity, we assume that the decision
is static in contrast to recent work by ban2018dynamic. We shall use this synthetic big data news vendor
problem to illustrate the bootstrap disappointment of the robust Nadaraya-Watson and nearest neighbors
formulations in a particular context of interest, i.e., x̄ = (t̄, w̄) = (10◦C, Friday).

We would like to investigate to what extent our bootstrap robust formulations prevent against overfit-
ting the training data set. Given an action zrtr[n] calibrated to this training data set and its budgeted cost

cn(zrtr[n], Dtr[n], x0), we approximate its bootstrap disappointment as stated in Definition 1 using a large num-

ber |B| = 20, 000 of bootstrap resamples as suggested in (10). In Figure 4, we present this empirical bootstrap
disappointment as a function of the number n of training samples for the nominal and robust Nadaraya-
Watson and nearest neighbors formulations. The nominal Nadaraya-Watson of hannah2010nonparametric
and the nearest neighbors formulation by bertsimas2014predictive corresponds to the cases depicted with
r = 0. Such nominal formulations do not safeguard against over-calibration as they disappoint on random
bootstrap data about half the time. The dotted lines visualize the upper bounds concerning the bootstrap
disappointment of the bootstrap robust Nadaraya-Watson and nearest neighbors formulation given in Corol-
lary 2 and Theorem 8, respectively. The guarantee in case of the nearest neighbors formulation is not as
tight as its Nadaraya-Watson counterpart mostly due to the use of the union bound in the proof of Theorem
8. Nevertheless, large deviation theory via (23) ensures that the empirical bootstrap disappointments and
their corresponding theoretical upper bound in either formulation drop to zero at the same exponential rate
r.

Working with synthetic data gives us the opportunity to compare the robust and nominal formulations
in terms of their true performance. Indeed, as the distribution D? is known we can compare the actual
cost ED?

[
L(zdata[n], y)|x = x0

]
of any proposed decisions zdata[n]. We are also interested in seeing how

each of the methods fares if we augment the covariates with a number d of irrelevant spurious observations
generated from independently sampling a standard normal distribution. It should not come as a surprise
that when no spurious covariates are introduced the robust approaches in blue outperform their nominal
counterparts in orange significantly as can be seen in Figure 5. The reported cost is the average among
20, 000 random training sets each of length n = 200. Here, the amount of robustification r used in ei-
ther formulation was determined based on ten fold cross validation. Given only n = 200 training samples,
both the robust Nadaraya-Watson and nearest neighbor formulation do indeed come close to the theoret-
ically minimal cost minz ED? [L(z, y)|x = x0] visualized as the black line for reference. As more spurious
covariates are injected in the training data set, the performance of any data-driven method must evidently
degrade. Ultimately as d tends to infinity, the noise completely drowns out the signal. The performance of
data-driven methods is expected to tend to the optimal cost minz ED? [L(z, y)] without using any covariate
information and is visualized as the red line. It is curious to observe that the performance of the nom-
inal Nadaraya-Watson and nearest neighbors decisions behave differently than their robust counterparts.
Counter-intuitively, the performance of both nominal formulations initially improves with the introduction
of spurious covariates. We observed empirically that when no spurious covariates are introduced the nominal
cost estimates EnDtr[n]

[L(z̄, y)|x = x0] for all z̄ on which the nominal formulations are based tend to over-

calibrate the training data. Consequently, the nominal actions suffer poor out-of-sample performance. Our
robust formulations do a good job in alleviating this adverse phenomenon without much performance loss.
The introduction of artificial noise in the data through spurious covariates seems to provide implicit protec-
tion against over-calibration of EnDtr[n]

[L(z̄, y)|x = x0] to the training data by preventing the selection, at

least when using cross-validation, of a small bandwidth parameter h(n) or a small number of neighbors k(n)
in the Nadaraya-Watson and nearest neighbor formulation, respectively. The addition of spurious covariates
has a similar effect as robustification but crucially does comes with a loss of performance.
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Figure 5: The actual cost ED? [L(z, y)|x = x0] of the decisions proposed by the nominal and robust Nadaraya-
Watson formulation as well as the nominal and robust nearest neighbors formulation. The reported cost is the
average among 20, 000 random training sets each of length n = 200. The error bars indicate 95% intersample
variation. The dimension d reflects the number of spurious covariates introduced. The black line correspond
to the optimal full information cost minz ED? [L(z, y)|x = x0], while the red line represents the optimal no
information cost minz ED? [L(z, y)]. The robust formulations clearly dominate their nominal counterparts
when no spurious covariates (d = 0) are introduced. When spurious covariates are introduced (d > 0)
the cost predictions EnDtr[n]

[L(z, y)|x = x0] on which all formulations are based tend to be under-calibrated

leading to both a loss of performance and a limited room for improvement through robustification.
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5.2 A Portfolio Selection Problem

We consider a small portfolio allocation problem in which a decision z ∈ R4
+ needs to be taken in how to split a

limited weekly investment budget, i.e., 1>z = 1, among four stocks S := {Apple, Airbus, Boeing, Facebook}.
We decide each Sunday which stocks to buy on Monday and sell on Friday during the subsequent trading
week. We obtained weekly trading data for each of the mentioned stocks from Alpha Vantage1 for all 261
weeks between the 2th of February 2014 and the 27th of January 2019. The weekly returns of each of those
stocks may evidently be affected by a large number of covariates. We decided to use the popularity of the
search terms {Cambridge Analytica, IBM Redhat} as obtained from Google Trends2 as well as the date as
potential covariates x. The mentioned covariates may have an indirect impact on the weekly returns y ∈ R4

of each of the stocks in our portfolio. A responsible portfolio manager would hence do good to take into
account this additional information in the selection of stocks to invest in.

Portfolio selection via optimization has a long history dating back to the pioneering work of markowitz1991foundations.
A plethora of methods have been developed in the literature which address portfolio selection problems, see
demiguel2007optimal and references therein. More recently, ban2016machine use machine learning to
incorporate covariate information when optimization the portfolio selection. The purpose of this section is
not to show that the our data-driven formulations compares favorable to all other portfolio selection strate-
gies. Given the amount of prior art in portfolio selection, this seems indeed unlikely to be the case. Rather,
we would like to illustrate the value of robustness in the context of real data.

Typically an portfolio selection is made to balance both expected return and some measure of risk. Pop-
ular risk measures are the value-at-risk (VAR) and the conditional value-at-risk (CVaR); see for instance
lim2011conditional. To simplify the exposition here, we imagine a portfolio manager which is a assigned
a budget to manage risky investments where the primary objective is high expected returns in the long run.
Here, the primary focus is the raw profit L(z, y) = −z>y without regard for risk assessment. Ideally, the
portfolio manager would like to select

z?(x0) = arg minz ED?

[
−z>y|x = x0

]
s.t. z ∈ R4

+, 1>z = 1.

where D? is the unknown distribution of the returns and covariates. Let us denote the expected return of
each stock as r(x0) = ED? [y|x = x0] ∈ R4. Evidently, when primarily caring about long term expected profit
the manager will assign the entire budget to the stocks arg maxi∈S ri(x0) with highest expected return.

However, in practice the distribution D? is not known and our training data set of 261 historical losses and
covariates will have to do instead. We use instead the data-driven formulations we consider in this paper
again. To evaluate the performance of a data-driven formulation in view of the fact that the actual expected
profits are unknown, we partition the data into n = 200 training data points, 31 validation data points and
30 test data point. As market return data is highly noisy, we consider 200 such partitions randomly and
report as the validation performance and test performance of any data-driven formulation, its profit averaged
over each of these 200 validation and test partitions; see Figure 6. Besides the nominal Nadaraya-Watson
and nearest neighbors formulations (r = 0), we consider their robust counterparts with r(n) = 1/n log(1/b)
where b ranges between 1 and 0.01. The final r? is chosen as to maximize the validation profit. It should
first be remarked that Nadaraya-Watson learning seems more appropriate here as it seems both to provide
better average profits and is less affected by the highly variable return and search data. From Figure 6 it is
clear that robustness in Nadaraya-Watson formulations select portfolios which have better performance on
both the validation and crucially the test data sets. We close by remarking that robustness only helps if the
nominal formulations are appropriate for the data set. Indeed, the nominal nearest neighbors formulation
does not seem to be competitive, and simply adding robustness is not a miracle cure.

1https://www.alphavantage.co
2https://trends.google.com
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Figure 6: The average profit of the portfolios on 200 random train-learn-test partitions for both the Nadaraya-
Watson and nearest neighbors formulations. From first glance it is clear that the Nadaraya-Watson formula-
tions seem more appropriate here as they seems both to provide better average profits and are less affected
by the highly variable return and search data. Adding robustness is most effective when the nominal formu-
lation performs well. Robustness is not a miracle cure when the data-driven formulation is not appropriate
as the results for the nearest neighbors formulation illustrate.

6 Conclusion

We discussed in this paper prescriptive analytics problems where cost optimal decisions are to be adapted to a
specific covariate context using only supervised data. Our balloon estimation formulation allows for superior
context specific decision-making when compared to the naive sample average formulation. As all data-driven
methods are prone to adverse overfitting phenomena we must safeguard against over-calibration to one
particular training data set. To that end we introduced a novel notion of robustness which guards against
overfitting and crucially is itself completely data-driven. Our notion of bootstrap robustness is inspired by
the statistical bootstrap, and does not pose any statistical assumption on training data. We derived a novel
bootstrap robust balloon estimation formulation which is as tractable as its nominal counterpart based on
ideas from distributionally robust optimization. Finally, we have illustrated the benefits of bootstrap robust
decisions empirically in terms of their superior out-of-sample performance on two small numerical examples.
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A Proofs

A.1 Proof of Theorem 3

Proof. First note that the domain of the partial estimators as a function of the distribution D satisfies

dom En,j
D [L(z,Y)|x = x̄] ⊆ Dj

n.
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For a distribution D to be in the domain of the partial estimator the constraints in equation (16) must
indeed be feasible. In other words, there must exists some P and s > 0 for which s ·D[x̄, ȳ] = P [x̄, ȳ] for all
(x̄, ȳ) ∈ Ωn. The last two constraints in equation (16) then imply that any such D ∈ Dn must also be in Djn.

Any D ∈ Dn,n is the empirical distribution of some bootstrap data set, say bs[n], consisting of n observations
from the training data set. Each set Djn,n := Djn ∩Dn,n has a very natural interpretation in terms of N j

n(x0)
being the smallest neighborhood containing at least k observations of this associated bootstrap data set
bs[n]. Indeed, D ∈ Djn,n is in terms of the associated data set equivalent to

k ≤ ∑
(x̄,ȳ)∈bs[n] 1{(x̄, ȳ) ∈ N j

n(x0)} = n ·∑(x̄,ȳ)∈Nj
n(x0)D[x̄, ȳ],

k >
∑

(x̄,ȳ)∈bs[n] 1{(x̄, ȳ) ∈ N j−1
n (x0)} = n ·∑(x̄,ȳ)∈Nj−1

n (x0)D[x̄, ȳ].

The first inequality implies that the neighborhood N j
n(x0) contains at least k observations of the associated

data set. Note that the sets N j
n(x0) are increasing with increasing j in terms of set inclusion. The latter

inequality hence implies that the biggest smaller neighborhood N j−1
n (x0) does not contain k observations.

Both conditions taken together thus imply that N j
n(x0) is the smallest neighborhood which contains at least

k samples of the bootstrap data set. Any D in Dn,n is an element in one and only one set Djn,n as the smallest

neighborhood containing at least k samples is uniquely defined for any data set. Formally, Djn,n ∩ Dj
′

n,n = ∅
for all j 6= j′ and moreover ∪j∈[n]Djn,n = Dn,n. Notice also that the only feasible s in the constraints defining
the partial predictors in equation (16) is the particular choice s = 1/

∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) · P [x̄, ȳ] > 0.

Hence, we must have that for any D ∈ Djn,n the partial estimator equates to

En,jD [L(z̄, y)|x = x0] =

∑
(x̄,ȳ)∈Nj

n(x0) L(z̄, ȳ) · wn(x̄, x0) ·D(x̄, ȳ)∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) ·D(x̄, ȳ)
∀z̄

which is precisely the weighted average over the neighborhood N j
n(x0). We have hence for all z̄ that

maxj∈[1,...,n] En,jD [L(z̄, y)|x = x0] =



∑
(x̄,ȳ)∈N1

n(x0) L(z̄, ȳ) · wn(x̄, x0) ·D[x̄, ȳ]∑
(x̄,ȳ)∈N1

n(x0) wn(x̄, x0) ·D[x̄, ȳ]
for D ∈ D1

n,

...
...∑

(x̄,ȳ)∈Nn
n (x0) L(z̄, ȳ) · wn(x̄, x0) ·D(x̄, ȳ)∑

(x̄,ȳ)∈Nn
n (x0) wn(x̄, x0) ·D(x̄, ȳ)

for D ∈ Dn
n.

= EnD [L(z̄, y)|x = x0]

as we have argued that D ∈ Djn,n if and only if N j
n(x0) is the smallest neighborhood containing at least k

data points. As the empirical distribution D and associated data set bs[n] were chosen arbitrary the result
follows.

A.2 Proof of Corollary 1

Proof. Remark that from the definition of the Nadaraya-Watson cost estimate EnDtr[n]
[L(z, y)|x = x0] :=

EDtr[n]
[L(z, y) · wn(x, x0)]/EDtr[n]

[wn(x, x0)] given in (14) it follows that we have

EnDtr[n]
[L(z, y)|x = x0] := maxs>0,P

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) · L(z, ȳ) · P [x̄, ȳ]

s.t. P [x̄, ȳ] = D[x̄, ȳ] · s ∀(x̄, ȳ) ∈ Ωn,∑
(x̄,ȳ)∈Ωn

P [x̄, ȳ] = s,
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) · P [x̄, ȳ] = 1.

Indeed, the only feasible s is such that s = 1/
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) · P [x̄, ȳ]. Hence, the only feasible P is

P = D/
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) · P [x̄, ȳ] and the equivalence follows. The chain of equalities{

(s, P ) : ∃D s.t. s ·D = P, R(D,Dtr[n]) ≤ r
}

=
{

(s, P ) : R(P/s,Dtr[n]) ≤ r
}

=
{

(s, P ) : s ·R(P/s,Dtr[n]) ≤ s · r
}
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imply that the robust budget function cn(z,Dtr[n], x0) corresponds exactly to the optimization formulation
claimed in the corollary.

A.3 Proof of Theorem 5

Proof. We first show the uniform convergence of the robust budget function to its nominal counterpart when
the loss function L(z̄, ȳ) < L̄ < ∞ is bounded. Let us first consider a given training data set tr[n]. Note
that because of its definition as robust counterpart of the balloon estimator, we have that the robust balloon
budget can be bounded as

EnDtr[n]
[L(z̄, y)|x = x0] ≤ cn(z̄, Dtr[n], x0) ≤ EnDwc[n]

[L(z̄, y)|x = x0] + α

for some worst-case distributions Dwc[n] at distance at most B(Dwc[n], Dtr[n]) ≤ r(n) from the training dis-

tribution for any arbitrary α > 0. In terms of the total variation distance, we have that
∥∥Dwc[n] −Dtr[n]

∥∥
1
≤√

B(Dwc[n], Dtr[n])/2 ≤
√
r(n)/2 following Pinkser’s inequality.

The Nadaraya-Watson estimate based on the worst-case distribution is the fraction

EnDwc[n]
[L(z̄, y)|x = x0] :=

∑
(x̄,ȳ)∈Ωn

L(z̄, ȳ) · wn(x̄, x0) ·Dwc[n][x̄, ȳ]/h(n)d∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) ·Dwc[n][x̄, ȳ]/h(n)d

where we denote here d = dim(x) for conciseness. We have that the denumerator of the Nadaraya-Watson
estimator is lower bounded by∑

(x̄,ȳ)∈Ωn
wn(x̄, x0)/h(n)dDwc[n][x̄, ȳ]

=
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0)/h(n)dDtr[n][x̄, ȳ] +

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0)/h(n)d
(
Dwc[n][x̄, ȳ]−Dtr[n][x̄, ȳ]

)
≥∑(x̄,ȳ)∈Ωn

wn(x̄, x0)/h(n)dDtr[n][x̄, ȳ]−
(
max(x̄,ȳ)∈Ωn

wn(x̄, x0)
)√

r(n)/2/h(n)d

≥∑(x̄,ȳ)∈Ωn
wn(x̄, x0)/h(n)dDtr[n][x̄, ȳ]−

√
r(n)/2/h(n)d

Here the first inequality follows from the Cauchy-Schwartz inequality
∣∣a>b∣∣ ≤ ‖a‖∞ · ‖b‖1. Notice that here

the weights 0 ≤ wn(x̄, x0) ≤ wn(x0, x0) ≤ 1 are all non-negative and bounded from above by one for all
smoother functions in Table 1. Lemma 6 in walk2010strong establishes that the limit

lim inf
n→∞

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0)/h(n)dDdata[n][x̄, ȳ] = 2d(x0) > 0

is positive with probability one. Taken together with the premisse limn→∞
√
r(n)/h(n)d = 0 this estab-

lishes the existence of a large enough sample size n0 such that for all n ≥ n0 we have that the de-
nominator of the Nadaraya-Watson estimator satisfies

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0)/h(n)dDwc[n][x̄, ȳ] ≥ d(x0) and∑
(x̄,ȳ)∈Ωn

wn(x̄, x0)/h(n)dDtr[n][x̄, ȳ] ≥ 2
√
r(n)/2/h(n)d. Similarly, the nominator of the Nadaraya-Watson

estimator satisfies ∑
(x̄,ȳ)∈Ωn

L(z̄, ȳ) · wn(x̄, x0) ·Dwc[n][x̄, ȳ]/h(n)d

≤ ∑
(x̄,ȳ)∈Ωn

L(z̄, ȳ) · wn(x̄, x0) ·Dtr[n][x̄, ȳ]/h(n)d +
√
r(n)/2/h(n)d

In what follows we will use the inequality a/(b− x) ≤ a/b + 2a/b · x for all x ≤ b/2 when a, b > 0. This
inequality follows trivially from the definition of convexity of the function a/(b− x) for all x ≤ b when
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a, b > 0. Using the previous inequalities we can establish when n ≥ n0 the following claims

EnDwc[n]
[L(z̄, y)|x = x0]

≤
∑

(x̄,ȳ)∈Ωn
L(z̄, ȳ) · wn(x̄, x0) ·Dtr[n][x̄, ȳ]/h(n)d∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) ·Dwc[n][x̄, ȳ]/h(n)d

+

√
r(n)/2

h(n)dd(x0)

≤
∑

(x̄,ȳ)∈Ωn
L(z̄, ȳ) · wn(x̄, x0) ·Dtr[n][x̄, ȳ]/h(n)d∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) ·Dtr[n][x̄, ȳ]/h(n)d −

√
r(n)/2/h(n)d

+

√
r(n)/2

h(n)dd(x0)

≤ EnDtr[n]
[L(z̄, y)|x = x0] + 2EnDtr[n]

[L(z̄, y)|x = x0]
√
r(n)/2/h(n)d +

√
r(n)/2

h(n)dd(x0)

≤ EnDtr[n]
[L(z̄, y)|x = x0] + (2L̄+ 1/d(x0))

√
r(n)/2/h(n)d.

The nominal Nadaraya-Watson estimator is uniformly consistent, i.e., |EnDdata[n]
[L(z̄, y)|x = x0]−ED? [L(z̄, y)|x = x0] | ≤

ε(n) for limn→∞ ε(n) = 0 as discussed before. It hence trivially follows that the robust Nadaraya-Watson
estimator is uniformly consistent as well. Indeed, from the previous inequality it follows that

|cn(z̄, Ddata[n], x0)− ED? [L(z̄, y)|x = x0] | ≤ ε(n) + (2L̄+ 1/d(x0))
√
r(n)/2/h(n)d + α

with probability one for all z̄. This inequality holds for any arbitrary α > 0. Uniform consistency then
directly implies here an asymptotically diminishing optimality gap

ED?

[
L(zrdata[n], y)|x = x0

]
−min

z
ED? [L(z̄, y)|x = x0] ≤ 2ε(n) + (4L̄+ 2/d(x0))

√
r(n)/2/h(n)d.

Using that limn→∞
√
r(n)/h(n)d yields the wanted result immediately.

A.4 Proof of Theorem 6

Proof. We show the uniform convergence of the robust budget function to the unknown cost, that is, and
any bounded function L(z̄, ȳ) < L̄ < ∞ for all z̄ and ȳ. Let us first consider a given training data set tr[n]
without ties. That is, we have that

∣∣N j
n(x0)

∣∣ = j for all j ∈ [n]. Note that because of its definition as robust
counterpart of the balloon estimator EnDtr[n]

[L(z̄, y)|x = x0], we have that the robust cost can be bounded as

EnDtr[n]
[L(z̄, y)|x = x0] ≤ cn(zrtr[n], Dtr[n], x0) ≤ Ej

?

Dwc[n]
[L(z̄, y)|x = x0] + α

for some worst-case distributions Dwc[n] ∈ Dj?n at distance at most B(Dwc[n], Dtr[n]) ≤ r(n) from the
training distribution for any arbitrary α > 0. In terms of the total variation distance, we have that∥∥Dwc[n] −Dtr[n]

∥∥
1
≤
√
B(Dwc[n], Dtr[n])/2 ≤

√
r(n)/2 following Pinkser’s inequality. The nearest-neighbors

estimate based on the worst-case distribution is defined as the fraction

EnDwc[n]
[L(z̄, y)|x = x0] :=

∑
(x̄,ȳ)∈Nj?

n (x0) L(z̄, ȳ) ·Dwc[n][x̄, ȳ]∑
(x̄,ȳ)∈Nj?

n (x0)Dwc[n][x̄, ȳ]
.

The neighborhood parameter j? satisfies by definition
∑

(x̄,ȳ)∈Nj?
n (x0)Dwc[n][x̄, ȳ] ≥ k(n)/n. The previous

inequality bounds the denominator from below by k(n)/n. Using the Cauchy-Schwartz inequality
∣∣a>b∣∣ ≤

‖a‖∞ · ‖b‖1 as well as the Pinkser inequality, the nominator of the Nadaraya-Watson estimator satisfies∑
(x̄,ȳ)∈Nj?

n (x0) L(z̄, ȳ) ·Dwc[n][x̄, ȳ]

≤ ∑
(x̄,ȳ)∈Nj?

n (x0) L(z̄, ȳ) ·Dtr[n][x̄, ȳ] + L̄
√
r(n)/2.

We also have that from the definition of the total variation distance that ‖Dtr[n]−Dwc[n]‖1 ≥ Dtr[n][N
j?
n (x0)]−

Dwc[n][N
j?
n (x0)] ≥ (j? − k(n))/n. We have also ‖Dwc[n]−Dtr[n]‖1 ≥ Dwc[n][N

j?−1
n (x0)]−Dtr[n][N

j?−1
n (x0)] ≥

(k(n)− j?)/n. Last two inequalities imply that we can use the bound
√
r(n)/2 ≥ ‖Dtr[n] − Dwc[n]‖1 ≥
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|k(n)− j?| /n. By applying first the Cauchy-Schwartz inequality again and then the previously obtained
bounds we can obtain∑

(x̄,ȳ)∈Nj?
n (x0) L(z̄, ȳ)Dtr[n][x̄, ȳ]

≤ ∑
(x̄,ȳ)∈Nk(n)

n (x0)
L(z̄, ȳ)Dtr[n][x̄, ȳ] + L̄|Dtr[n]{N j?

n (x0)]−Dtr[n][N
k(n)
n (x0)]|

≤ ∑
(x̄,ȳ)∈Nk(n)

n (x0)
L(z̄, ȳ)Dtr[n][x̄, ȳ] + L̄ |j? − k(n)| /n

≤ ∑
(x̄,ȳ)∈Nk(n)

n (x0)
L(z̄, ȳ)Dtr[n][x̄, ȳ] + L̄

√
r(n)/2.

Hence,

EnDtr[n]
[L(z̄, y)|x = x0] ≤ cn(z̄, Dtr[n], x0) ≤ EnDtr[n]

[L(z̄, y)|x = x0] +
2L̄n

√
r(n)/2

k(n)
+ α (27)

for any arbitrary training data set without ties. Ties among data points when using the random tie breaking
method are a probability zero event which we may ignore. We already know that the nearest neigbors
estimator is uniformly consistent. That is, we have that |EnDdata[n]

[L(z̄, y)|x = x0]− ED? [L(z̄, y)|x = x0] | ≤
ε(n) with probability one and limn→∞ ε(n) = 0. When the robustness radius does shrinks at an appropriate
rate, i.e., its size compared to the bandwidth parameter is negligible (limn→∞ n

√
r(n)/k(n) = 0), then

uniform consistency of budget estimator cn follows by taking the limit for n tends to infinity for the chain
of inequalities in (27) applied to Ddata[n] and observing that α > 0 is arbitrarily small. Uniform consistency
of the nearest-neighbors formulation follows by the exact same argument as given in proof of Theorem 5 in
case of the Nadaraya-Watson formulation.

A.5 Proof of Corollary 2

Proof. Let us fix a training data set with empirical distribution Dtr[n] and a given decision z. Let c̄n :=
EnDtr[n]

[L(z̄, y)|x = x0] be the budgeted cost based on the training data with k(n) = n. In order to prove

the theorem, it suffices to characterize the probability of the event that the empirical distribution Dbs[n] of
random bootstrap data resampled from the training data realizes in the set

C :=

{
D ∈ Dn :

∃s > 0, s ·∑(x̄,ȳ)∈Ωn
wn(x̄, x0) · L(z̄, y) ·D(x̄, ȳ) > c̄n,

s ·∑(x̄,ȳ)∈Ωn
wn(x̄, x0) ·D(x̄, ȳ) = 1

}
as follows from Corollary 1. After eliminating the auxiliary variable s we arrive at the description C = {D ∈
Dn :

∑
(x̄,ȳ)∈Ωn

wn(x̄, x0) ·L(z̄, y) ·D(x̄, ȳ) > c̄n ·
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) ·D(x̄, ȳ)}. The set C is a convex polyhe-

dron. The robust budget cost c̄n is constructed to ensure that infD∈C R(D,Dtr[n]) > r. Indeed, we have the
rather direct implication D̄ ∈ C =⇒ En

D̄
[L(z̄, y)|x = x0] > c̄n = sup {EnD [L(z̄, y)|x = x0] |R(D,Dtr[n]) ≤ r}

which in turn itself implies R(D̄,Dtr[n]) > r. Hence, the result follows from the bootstrap inequality (22)
applied to the probability D∞tr[n](Dbs[n] ∈ C) as in this particular case the employed model distance function

(R = B) coincides with the bootstrap distance function.

A.6 Proof Lemma 1

Proof. We will employ standard Lagrangian duality on the convex optimization characterization (19) of the
partial nearest neighbors cost function associated cjn(z̄, D, x0). The Lagrangian function associated with the
primal optimization problem in (19) is denoted here at the function

L(P, s;α, β, η, ν) :=∑
(x̄,ȳ)∈Nj

n(x0) wn(x̄, x0) · L(z, ȳ) · P [x, y] +
(

1−∑(x̄,ȳ)∈Nj−1
n (x0) wn(x̄, x0) · P [x̄, ȳ]

)
α

+
(∑

(x̄,ȳ)∈Nj
n(x0) P [x̄, ȳ]− k

n · s
)
η1 +

(
k−1
n · s−

∑
(x̄,ȳ)∈Nj−1

n (x0) P [x̄, ȳ]
)
η2

+
(∑

(x̄,ȳ)∈Ωn
P [x̄, ȳ]− s

)
β +

(
r · s−∑(x̄,ȳ)∈Ωn

P [x̄, ȳ] log
(
P [x̄,ȳ]
s·D[x̄,ȳ]

))
ν
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where P and s are the primal variables of the primal optimization problem (19) and α, β, η and ν the dual
variables associated with each of its constraints. Collecting the relevant terms in the Lagrangian function
results in L(P, s;α, β, ν) =

α+s(rν − β − k
n (η1 − η2)− η2

n )

+
∑

(x̄,ȳ)∈Nj−1
n (x0)

[
P [x̄, ȳ] ((L(z, y)− α) · wn(x̄, x0) + β + η1 − η2)− νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
+
∑

(x̄,ȳ)∈Nj
n(x0)\Nj−1

n (x0)

[
P [x̄, ȳ] ((L(z, y)− α) · wn(x̄, x0) + β + η1)− νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
+
∑

(x̄,ȳ)∈Ωn\Njn(x0)

[
P [x̄, ȳ]β − νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
The dual function of the primal optimization problem (19) is identified with the concave function g(α, β, η, ν) :=
infP≥0, s>0 L(P, s;α, β, ν). Using the same manipulations as presented in the proof of Lemma 2 we can ex-
press the dual function as g(α, β, η, ν) =

= sups>0 α+ s(rν−β − k
n (η1 − η2)− η2

n ) + sν
∑

(x̄,ȳ)∈Ωn\Nj
n(x0)D[x̄, ȳ] exp

(
β
ν − 1

)
+ sν

∑
(x̄,ȳ)∈Nj−1

n (x0)D[x̄, ȳ] exp
(

(L(z,ȳ)−α)·wn(x̄,x0)+β+η1−η2
ν − 1

)
+ sν

∑
(x̄,ȳ)∈Nj

n(x0)\Nj−1
n (x0)D[x̄, ȳ] exp

(
(L(z,ȳ)−α)·wn(x̄,x0)+β+η1

ν − 1
)
.

Our dual function can be expressed alternatively as

g(α, β, η, ν) =
{
α : r · ν − k

n (η1 − η2)− η2
n + ν

∑
(x̄,ȳ)∈Ωn\Nj

n(x0)D[x̄, ȳ] exp
(
β
ν − 1

)
+ ν

∑
(x̄,ȳ)∈Nj−1

n (x0)D[x̄, ȳ] exp
(

(L(z,ȳ)−α)·wn(x̄,x0)+β+η1−η2
ν − 1

)
+ ν

∑
(x̄,ȳ)∈Nj

n(x0)\Nj−1
n (x0)D[x̄, ȳ] exp

(
(L(z,ȳ)−α)·wn(x̄,x0)+β+η1

ν − 1
)
≤ β

}
.

The dual optimization problem of the primal problem (19) is now found as infα,β,ν≥0 g(α, β, ν). As the primal
optimization problem in (19) is convex, strong duality holds under Slater’s condition which is satisfied when-
ever r > rjn. Using first-order optimality conditions, the optimal β? must satisfy the relationship β? = −ν +
ν log(

∑
(x̄,ȳ)∈Nj−1

n (x0
D[x̄, ȳ] exp([(L(z, ȳ)−α)·wn(x̄, x0)+η1−η2]/ν)+

∑
(x̄,ȳ)∈Nj

n(x0)\Nj−1
n (x0)D[x̄, ȳ] exp([(L(z, ȳ)−

α) ·wn(x̄, x0) + η1]/ν) +
∑

(x̄,ȳ)∈Nj
n(x0)\Nj−1

n (x0)D[x̄, ȳ]). Substituting the optimal value of β? in the back in
the dual optimization problem gives

inf
α,β,ν≥0

g(α, β, η, ν) = infα,ν≥0 g(α, β?, η, ν)

= inf
{
α ∈ R : ∃ν ∈ R+,∃η ∈ R2

+, r · ν − k
n (η1 − η2)− η2

n · ν
+ ν log(

∑
(x̄,ȳ)∈Nj−1

n (x0) exp([(L(z, ȳ)− α) · wn(x̄, x0) + η1 − η2]/ν) ·D[x̄, ȳ]

+
∑

(x̄,ȳ)∈Nj
n(x0)\Nj−1

n (x0) exp([(L(z, ȳ)− α) · wn(x̄, x0) + η1]/ν) ·D[x̄, ȳ]

+
∑

Ωn\Nj
n(x0)D[x̄, ȳ]) ≤ 0

}
.

A.7 Proof Lemma 2

Proof. We will employ standard Lagrangian duality on the convex optimization characterization of the
Nadaraya-Watson cost function given in Corollary 1. The Lagrangian function associated with the primal
optimization problem is denoted here at the function

L(P, s;α, β, ν) :=
∑

(x̄,ȳ)∈Ωn
wn(x̄, x0) · L(z̄, ȳ) · P [x̄, ȳ] +

(
1−∑(x̄,ȳ)∈Ωn

wn(x̄, x0) · P [x̄, ȳ]
)
α+(∑

(x̄,ȳ)∈Ωn
P [x̄, ȳ]− s

)
β +

(
r · s−∑(x̄,ȳ)∈Ωn

P [x̄, ȳ] log
(
P [x̄,ȳ]
s·D[x̄,ȳ]

))
ν
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where P and s are the primal variables of the primal optimization problem given in Corollary 1 and α, β and
ν the dual variables associated with each of its constraints. Collecting the relevant terms in the Lagrangian
function results in

L(P, s;α, β, ν) = α+ s(rν − β) +
∑

(x̄,ȳ)∈Ωn

[
P [x̄, ȳ] ((L(z̄, ȳ)− α) · wn(x̄, x0) + β)− νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
The dual function of the primal optimization problem is identified with the concave function g(α, β, ν) :=
infP≥0, s>0 L(P, s;α, β, ν). Our dual function can be expressed alternatively as g(α, β, ν) =

sups>0 α+ s (rν − β) + sup
P≥0

∑
(x̄,ȳ)∈Ωn

[
P [x̄, ȳ] ((L(z̄, ȳ)− α) · wn(x̄, x0) + β)− νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
= sups>0 α+ s (rν − β) +

∑
(x̄,ȳ)∈Ωn

sup
P [x̄,ȳ]≥0

[
P [x̄, ȳ] ((L(z̄, ȳ)− α) · wn(x̄, x0) + β)− νP [x̄, ȳ] log

(
P [x̄,ȳ]
s·D[x̄,ȳ]

)]
= sups>0 α+ s (rν − β) + s

∑
(x̄,ȳ)∈Ωn

D[x̄, ȳ][supλ≥0 λ ((L(z̄, ȳ)− α) · wn(x̄, x0) + β)− νλ log (λ)].

The inner maximization problems over λ can be dealt with using the Fenchel conjugate of the λ 7→ λ · log λ
function as

= sups>0 α+ s (rν − β) + sν
∑

(x̄,ȳ)∈Ωn
D[x̄, ȳ] exp

(
(L(z̄,ȳ)−α)·wn(x̄,x0)+β

ν − 1
)

=
{
α : rν + ν

∑
(x̄,ȳ)∈Ωn

D[x̄, ȳ] exp
(

(L(z̄,ȳ)−α)·wn(x̄,x0)+β
ν − 1

)
≤ β

}
.

The dual optimization problem is now found as infα,β,ν≥0 g(α, β, ν). As our primal optimization is convex,
strong duality holds under Slater’s condition which is satisfied whenever r > 0. Using first-order optimality
conditions, the optimal β? must satisfy β? = −ν + ν log(

∑
(x̄,ȳ)∈Ωn

D[x̄, ȳ] exp((L(z̄, ȳ)− α) · wn(x̄, x0)/ν)).
Substituting the optimal value of β? in the back in the dual optimization problem gives

inf
α,β,ν≥0

g(α, β, ν) = infα,ν≥0 g(α, β?, ν)

= inf
{
α ∈ R : ∃ν ∈ R+, rν + ν log

(∑
(x̄,ȳ)∈Ωn

D[x̄, ȳ] exp
(

(L(z̄,ȳ)−α)·wn(x̄,x0)
ν

))
≤ 0
}
.
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